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Abstract

Unusual events trigger spikes in uncertainty that are persistent. Standard models
cannot match such dynamic patterns of uncertainty. This paper presents a unified
framework, motivated by the cognitive and economics literature on attention. Agents
prepare for different possible states of the world by collecting information that would
prove valuable should those states occur. Agents choose not to prepare for low probabil-
ity events, so that the occurrence of a rare does not resolve uncertainty, but increases it.
Uncertain agents have dispersed beliefs, and find it harder focus their preparation. For
an endogenously inattentive agent, uncertainty begets uncertainty, causing endogenous
uncertainty persistence, even when there is no persistence in the events themselves.
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1 Introduction

Rare or unexpected events repeatedly cause measures of political and financial uncertainty

to spike up, and stay persistently high for weeks or even months.1 For example, the VIX

increased after the terrorist attacks of 9/11 and the collapse of Lehman Brothers, and pol-

icy uncertainty jumped after Brexit and Trump’s election in 2016, as is shown in Figure 1.

Uncertainty can dictate how economic agents make consumption, investment, pricing, and

portfolio allocation decisions, so understanding the source and nature of uncertainty persis-

tence is crucial in both macroeconomics and finance.
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Figure 1: Plotted are monthly values of the Policy Uncertainty Index (PU) and daily values of the CBOE’s
Volatility Index (VIX) for the last 28 years. The VIX is a measure of expected volatility in the S&P 500
Index as calculated from options prices. The PU is a measure of macroeconomic uncertainty as calculated
from news articles, policy expirations, and analyst disagreement.

Standard models cannot generate these patterns in uncertainty dynamics. The workhorse

model of uncertainty dynamics is parameter learning,2 where agents do not know the value of

a parameter of a particular process. They can try to learn the value by observing the process,

and the more data they collect, the better their estimate. If a very unusual draw is observed,

they change their estimate sharply, and require many more observations for their estimates

to stabilize, causing the change in their estimate to be persistent. However, the data show

1. As a rough measure, the VIX and PU exhibit autocorrelations of about 98% and 81%, respectively.
2. See Orlik and Veldkamp (2014), Kozlowski, Veldkamp, and Venkateswaran (2016), Nimark (2014) for

persistence in a macroeconomic setting.
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that uncertainty spikes up repeatedly, and that when it jumps, it jumps up and not down.

Parameter-learning rational-expectations models need a lot of assumptions on the data to

generate these and other patterns. This paper, as part of a recent literature on dynamic

inattention,3 builds on the general framework of rational inattention to offer a theory that

can explain these patterns parsimoniously. In applying the model to a financial market, the

theory is able to match patterns in bid-ask spreads, expected volatility, dispersion of beliefs,

and volume of trade.4

The Mechanism

In this model, there is an underlying stationary process. Agents can choose to exercise

attention to collect information about some potential states of the world one period in

advance. Given that information collection is costly, they cannot attend to all future states.

Which states will they choose to learn about? Agents will devote their resources towards

states of the world that are, risk-weighted, more likely to occur, and will ignore states of

the world that are, risk-weighted, less likely to occur. To fix ideas, consider the following

illustration: prior to the 2016 US presidential election, investors could have prepared for how

markets would react to either a Clinton presidency or a Trump presidency. Most forecasts

predicted a Clinton win, so most investors would have devoted their resources to preparing

for that outcome. When Trump won, Clinton-based preparation would have been useless,

and unprepared investors would have been uncertain of where to invest. This uncertainty

would make it difficult for investors to figure out what policies would be pushed forward

next, how international relations would change, etc. Due to the dispersed set of possible

future states, investors wouldn’t know what to prepare for next. Therefore, no matter what

event followed, our inability to sufficiently prepare would lead to high levels of uncertainty

again - uncertainty would persist endogenously.

The mechanism of preparation is motivated by the experimental literature. Cognitive

experiments have shown that allocating attention in a preparatory manner is a part of

3. See, for example: Steiner, Stewart, and Matějka (2017), Maćkowiak, Matějka, and Wiederholt (2018),
Nimark and Sundaresan (2018), Ilut and Valchev (2017)

4. Other papers that use dynamic information structure to think about financial variables include Bolton
and Faure-Grimaud (2009),Banerjee and Breon-Drish (2017), and Banerjee and Kremer (2010)
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our attentional makeup. In a seminal experiment by Shaw and Shaw (1977), agents were

presented with visual stimuli. The subjects were told how likely the stimuli were to occur

in different parts of their visual field. When stimuli were then shown in parts they were

told were likely, subjects were able to identify them accurately. When stimuli were shown in

parts they were told were unlikely, subjects could not identify them accurately. The authors

concluded that agents are able to arrange their peripheral attention to prepare for different

events, and that they prepare more for likely events than for unlikely events. To deliver this

finding theoretically, I make one key assumption about the preparation process: the marginal

cost for preparation is the same for every state of the world.5 Such an assumption is not

really necessary, and the results of the paper are robust to may intuitive alternatives. The

cost structure that would weaken or even negate the findings of the paper is one where it is

harder to prepare for common events than it is to prepare for rare events. Such a structure

is not intuitive.6

The Results

Using preparation as the key mechanism to explain uncertainty dynamics, this paper’s model

delivers two results linked by one crucial mechanism. The first result matches that delivered

by the experiment described above: agents prepare more for events they deem likely and

less for events they deem unlikely.7 This result is also well established in the experimental

literature,8. When an anticipated event occurs, uncertainty is resolved and the precision of

agents’ beliefs increases; whereas when an unexpected event occurs the precision of agents’

beliefs decreases9.

The key of this paper is the mechanism that links the previous result to the following

one, showing important dynamic implications. Namely, agents’ incentives to prepare change

5. This assumption is a reduced form simplification of the channel capacity concept introduced to eco-
nomics by Woodford (2012), which was motivated in part by the experimental evidence of Shaw and Shaw
(1977). The results of this paper are robust to many intuitive alternatives.

6. It is however, as shown by Woodford (2012) a relatively undesirable property of a constraint on mutual
information.

7. This result was shown first by Maćkowiak and Wiederholt (2018) in a static model.
8. See Shaw and Shaw (1977), Posner, Snyder, and Davidson (1980), Eriksen and James (1986)
9. See Tenenbaum et al. (2011), Gershman, Horvitz, and Tenenbaum (2015), Posner, Snyder, and Solso

(2004), and Peters, McEwen, and Friston (2017) for the neuroscientific on preparation and uncertainty.
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when the agents are uncertain. By the first result, agents choose not to prepare for low

probability events, so the occurrence of low probability events causes agents to be uncertain.

Being uncertain means that agents’ beliefs over future states of the world are more dispersed,

and when beliefs are more dispersed, agents preparation is more dispersed. To understand

this intuitively, consider two different cases. In the first case, agents have strong, certain

beliefs, with a very small variance. In such a case, agents would be able to prepare for the

few events that are very likely according to their beliefs, and essentially ignore the rest. In

the second case, agents have weak, uncertain beliefs, with a very large variance. In such a

case, agents won’t be able to focus her preparation on a few events, because no events are

sufficiently likely in their beliefs to warrant such a focus. Agents will instead try to prepare

a little (if at all) about a host of different possible states.

The second result of this paper is to show that if agents are uncertain today, they will

continue to be uncertain tomorrow, because they cannot prepare well enough for any event.

Putting the first result together with the mechanism, one unexpected or rare event will trigger

a high level of uncertainty because agents will not have prepared for it. High uncertainty

makes it difficult for agents to prepare because preparation is costly, and their beliefs are too

diffuse to focus their preparations. Conversely, an expected or likely event results in a low

level of uncertainty because agents will have prepared for it. Low uncertainty makes it easy

for agents to prepare because their beliefs are tight, so agents can focus their preparations

on the few, likely states in their beliefs. Therefore, uncertainty (and certainty) persist

endogenously. This result differs from standard rational inattention models, which place

constraints or costs on mutual information. In those models, costs are proportional to the

probabilities of events, so ex-post uncertainty is identical in every state - there could, in fact,

be no uncertainty dynamics.

This mechanism is supported by the fact that economic and financial agents do, in fact,

prepare for various events. Central banks have instructed financial institutions to undergo

stress-testing in anticipation of another financial crisis. Martin and Pindyck (2015) considers

the mitigating properties of preparation for rare events. Such preparation is, at least in part,

useful to mitigate the uncertainty that would stem from a financial crisis, by having a plan

in place to deal with some of its effects. Additionally, this model supports the intuition that
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agents invest more in preparation when they are uncertain. Uncertain agents are sometimes

modeled as wanting information more, or scrambling for information. As I show in one of the

final results of the paper, despite the fact that high uncertainty leads to worse preparation on

average, it also leads to more spending on preparation in total due to the wealth of possible

states that are likely enough to warrant preparation.

Other Applications

The mechanism in this paper is quite general, and can be applied to other settings. Disper-

sion, and persistence in dispersion have been noted in many economic variables. Consider

the following examples:

The mechanism can be used to think about the persistence and countercyclicality of

price dispersion or wage dispersion. If firms prepare more for good times than for bad, then

according to this paper’s mechanism, firms will receive noisy signals on how to set prices and

wages in bad times. Therefore, price dispersion and wage dispersion will be higher in bad

times. By the mechanism of the paper, the dispersion will also be persistent.

Persistence in performance could also be explained with this mechanism. Firms or in-

dividual who perform well in certain states of the world in one period would be better

positioned to prepare for events in the next period. Therefore, they would be more likely

to face low levels on uncertainty subsequently, which would improve their performance as

well. Firms that perform poorly would be unsure of how to proceed, and would continue to

perform poorly.

Understanding uncertainty dynamics is crucial for financial and economic analysis.10

Uncertainty Because risk-aversion is a fundamental assumption in economics, reducing un-

certainty provides first-order welfare benefits. Therefore, finding the mechanism that allows

uncertainty to persist and propagate facilitates policies that reduce uncertainty and temper

its effects. This paper addresses this inquiry by showing that tools from the cognitive and

economics literature on attention yield a mechanism that causes uncertainty to spike and

remain persistently high after rare events.

10. See the literature spawned by Bloom (2009).
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Literature Review

Works such as Sims (2003) and Woodford (2012) argue that even if information is plentiful,

attention is a scarce resource. This notion is borne out by the experimental literature men-

tioned above, and has been explored in numerous fruitful settings, where a cost is typically

placed on the reduction in entropy agents obtain from receiving noisy information. See, for

example Matějka (2015a), Maćkowiak and Wiederholt (2009), Matějka (2015b), Matejka and

McKay (2015).

Bolton and Faure-Grimaud (2009) uses a dynamic information model to show that agents

might not fully work through contingencies up front, instead choosing to prioritize their costly

information collection, and postponing deliberations on low-probability or low-risk events.

The focus of that paper lies less with dynamic spillovers and persistence of beliefs, and

more with the tradeoff between reacting quickly to an event and thinking through future

implications carefully.

There is also a large literature that uses informational frictions to analyze the macroeco-

nomic impacts of changes in beliefs. Such papers typically use a parameter-learning setting.

Orlik and Veldkamp (2014) and Kozlowski, Veldkamp, and Venkateswaran (2016) study the

impact of changes in tail beliefs. Nimark (2014) looks at the impact of extraordinary news

events, and generates persistence in volatility by showing that agents are more sensitive to

information after such events.

Because this paper emphasizes the importance of attention across many possible states,

there is a natural parallel to the concept of salience. Salience in economics and finance

was introduced by a sequence of papers: Bordalo, Gennaioli, and Shleifer (2012), Bordalo,

Gennaioli, and Shleifer (2013a), Bordalo, Gennaioli, and Shleifer (2013b), and shows that

agents will choose to focus their attention on a subset of possible outcomes based on what

they deem salient. While this paper does not consider alternative reasons for why some

states might be more attractive to agents than others, the notion that different states carry

differing levels of importance, and therefore will command differing levels of attention is

crucial for this paper’s results.

This paper is part of a larger agenda in the inattention literature, that is interested in
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exploring the dynamics of inattention. More specifically, this paper is placed in a sequence

of papers that analyze how attending to the world today impacts one’s ability and relative

willingness to attend to the world later. Steiner, Stewart, and Matějka (2017) study slug-

gish responses to a slow-moving state, Maćkowiak, Matějka, and Wiederholt (2018) propose

analytical methods to study dynamic attention problems. Nimark and Sundaresan (2018)

show that ex-ante identical agents can diverge to opposite ends of a belief spectrum due to

rationally confirmatory and complacent behavior. Ilut and Valchev (2017) propose a dy-

namic framework where agents can pay attention to an entire policy function. In the finance

literature, papers such as Banerjee and Breon-Drish (2017) and Banerjee and Kremer (2010)

consider dynamic implications of asymmetric information, and disagreement on financial

variables.

The rest of the paper is as follows: Sections 2 and 3 present the model in binary and con-

tinuous settings. Section 4 applies the continuous form to an economy, deriving implications

for uncertainty, volatility, dispersion of beliefs, and trade. Section 5 concludes.

2 Simple Model

This section presents the simplest possible model in which the key mechanism of the paper

can be described. This model has one agent, two possible states of nature, and an infinite

number of periods. Using costly, state contingent preparation via information acquisition,

the model delivers persistent spikes in uncertainty in response to unlikely events.

2.1 Model Structure

State Structure: There are two possible states s of the world each period, A and B. To

fix intuition, suppose that one state of the world, A, is ‘the market increases in value’ while

the other, B, is ‘the market decreases in value’. The probability of the state taking the

value A each period, unconditional on any information, is π = P (st+1 = A). For simplicity,

I assume that π = 1− π = 1
2
. Relaxing this assumption would produce quantitative but not

qualitative changes to the results.
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Agent: There is a single agent. The agent enters period t with an information set It

that informs her beliefs. Her beliefs in period t about period t + 1’s state are given by

pt = max(P (st+1 = A|It), P (st+1 = B|It) ≥ 1
2
. Note that pt is not the probability of the

market going up in value, but is a value indicating the likelihood of the (weakly) more likely

state occurring. The likely state could either be the market increasing or decreasing. But

one state has to be at least as likely as the other, so pt refers to the probability of the more

likely event. pt can therefore be viewed as measuring the strength of the agent’s beliefs.

I will index the more likely state for period t+ 1 with L in period t. I will index the less

likely (or rare) state for period t+ 1 with R in period t. Put differently, pt = P (st+1 = L) =

1− P (st+1 = R).

Preparation Conditional on her beliefs pt, the agent can choose in period t to prepare

for each of the two possible states that could occur in period t + 1. That is, the agent

can prepare for the market either increasing or decreasing in value in the next period, by

collecting information about what will happen conditional on each of those two possibilities.

Preparation takes the form of picking information sets It+1,L and It+1,R. When state L or

state R occurs in period t+ 1, the agents beliefs will be:

pL = max(P (st+2 = A|st+1 = L, It+1,L), P (st+2 = B|st+1 = L, It+1,L))

pR = max(P (st+2 = A|st+1 = R, It+1,R), P (st+2 = B|st+1 = R, It+1,R))

When one of the possibilities occurs, the agent’s preparation for that state comes to fruition.

Information forms her beliefs, conditional on the state. For simplicity, I model this decision

as the agent directly selecting two possible values for pt+1 in period t: pL ≥ 1
2

is the belief

distribution she will have if the likely state occurs in t+1, and pR ≥ 1
2

is the belief distribution

she will have if the rare state occurs in t + 1. In a binary distribution, the probability

parameter p comoves with the precision of the distribution p(1 − p), so long as p ≥ 1
2
, as

has been assumed. Therefore, for the simplicity of the proofs, I will have the agent directly

select pL and pR, which is isomorphic to the agent picking pL(1 − pL) and pR(1 − pR) or

It+1,L and It+1,R.
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The intuition behind this structure is as follows. An investor might have beliefs about

whether the market will go up or down tomorrow. And she might have already placed trades

to take advantage of those beliefs. But she can also prepare for what comes next. If the mar-

ket goes up tomorrow, will it go up again the next day? If the market goes down tomorrow,

will it rebound afterwards? Collecting information about those possibilities will allow the

agent to react to each quickly and profitably. Therefore, she would want to spend resources

to be better prepared. In the appendix I consider an extension where agents can also collect

in formation in period t about the events of period t + 1 and show that all of the results

continue to hold.

Agent’s Costs: Improving the quality of preparation is costly, and the agent can choose

not to prepare at all. There is no fixed cost of preparing, but there is a cost function c(pt+1)

associated with increased accuracy of conditional beliefs. That cost function is the same for

the likely state and the rare state.

Agent’s Objective: The agent has a period-by-period utility function, which has one input:

the strength of the agent’s beliefs. As discussed above, Under a binary distribution, as in

this setup, the value pt comoves with the precision of the distribution pt(1 − pt), so long

as pt ≥ 1
2
, as has been assumed. Therefore, for simplicity, I assume that the agent’s utility

function is given by U(p). The agent benefits from having precise beliefs. Such a benefit is

a common feature of any utility function of a risk-averse agent.

Note that the utility function assumes the agent is indifferent as to whether one state

or another occurs, and cares only about the accuracy of her predictions going forward. The

state itself is not an input into the utility function. Intuitionally, the agent does not care if

the market rises or falls, and can trade beneficially long or short as long as her beliefs are

precise. Relaxing this assumption would have quantitative but not qualitative effects on the

results. One way to interpret the paper to allow for state-dependent payoffs is to think of

all the probabilities describe here as risk-neutral or risk-weighted probabilities.

Graphical Interpretation: Figure 2 shows the setup of the model. An agent in period t
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Figure 2: Plotted is a sample of three time periods in the binary state version of the model. Agents take their
beliefs in time t, pt, 1− pt, about the relative likelihood of the two possible states in period t+ 1 as given, and
can choose pL and pR, subject to a cost. Those choices will form their beliefs in period t+ 1, conditional on
one of the two possible states occurring, about the relative likelihood of the two possible states in period t+ 2.

takes her beliefs about the states in period t+1, pt, as given. Then, using costly information

acquisition, the agent chooses her conditional beliefs for period t+ 1 about period t+ 2, pL

and pR. Now that the structure of the economy has been described, I can present the agent’s

problem.

2.2 Statement of Problem

Formally, the agent’s problem in period t is given by the following Bellman equation:

V (pt) = max
pL,pR

U(pt)−c(pL)−c(pR)+βptV (pL)+β(1−pt)V (pR)+µR

(
pR −

1

2

)
+µL

(
pL −

1

2

)
(1)

The agent begins period t with a certain set of beliefs pt. The value associated with a

particular set of beliefs can be broken up into several components. First, there is the utility

function, U , a real-valued function on
[
1
2
, 1
]
, that is increasing in the strength of the agent’s

beliefs. As discussed above, because pt ≥ 1
2

comoves negatively with the variance of the

distribution, having U be an increasing function of pt is a common feature of almost any

standard utility function. Then there is the cost function, c. The agent pays a cost to improve

the strength of her future beliefs. That cost is additively separable across states, and is the

same regardless of the likelihood for the state being prepared for. These assumptions are

strong for tractability, but not essential, as will be discussed further below. The agent
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discounts the future at a rate β < 1. With probability pt, the likely state will occur, and

the agent’s conditional beliefs will be pL. With probability 1− pt, the rare state will occur,

and the agent’s conditional beliefs will be pR. The agent’s choices are subject to inequality

constraints, without loss of generality, that her subjective beliefs be weakly stronger than 1
2
.

The Kuhn-Tucker conditions associated with those constraints are represented by the last two

terms.11 Intuitively, an agent values her beliefs based on two things: (i) how uncertain those

beliefs make her, today, and (ii) the relative difficulty those beliefs cause her in preparing

for the next period’s events.

Deviation from the standard: This Bellman formulation differs in one crucial way from

a standard problem. The state variable today has two purposes. The first, standard purpose

is that it enters the utility function U . The second purpose, which is the innovation of this

paper (as well as of Nimark and Sundaresan (2018), albeit under different circumstances)

is that the state variable affects the distribution of the continuation value. My information

set today impacts how I want to collect information. Therefore, my motives in collecting

information today are twofold: first to maximize my utility next period, and second to change

how I want to collect information in the next period. This second channel emphasizes the

dynamic spillover of attention.

2.3 Solution

Assumptions: To guarantee a solution, I need to impose some structure on the functions

mentioned above. Namely I assume that:

1. U ′(·) > 0. This assumption states that the agent prefers stronger beliefs to weaker

ones.

2. c′(·) > 0. This assumption states that stronger beliefs are more costly to obtain than

weaker ones.

11. A proof that the Bellman equation 1 is a contraction is in the appendix. The fact that the Bellman is
a contraction mapping implies that there is a unique solution to the optimal choice that can be found by
iteration.
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3. c′′(·) > U ′′(·). This assumption states that the marginal cost of stronger beliefs in-

creases faster than the marginal benefit - a technical assumption to guarantee an inte-

rior solution.

4. c′(1) > U ′(1). This assumption states that certainty is too costly to ever be completely

attained.

These assumptions are relatively standard, in that they are satisfied by most existing utility

and costly information forms, and are sufficient to guarantee that interior solutions pL(pt)

and pR(pt) exist.

2.4 Results

The first result is that the agent will choose to collect more information about the likely

state, and less information about the rare state.

Proposition 1. p′R(pt) ≤ 0 and p′L(pt) ≥ 0.

Proof: See Appendix

The value of preparing for an event is proportional to its likelihood, but the cost is

independent. Therefore, an agent will focus her preparation on the state of the world she

believes likely to occur, as it has a good chance of proving useful. The converse of this result

is that the agent will tend to prepare less for states of the world she believes less likely to

occur, as such information would have a small chance of proving useful. Put more simply,

agents will tend to pay less attention to rarer events. A version of this result for a static

decision is shown in Maćkowiak and Wiederholt (2018).

The second result is that if the agent’s beliefs are sufficiently strong, she will not collect

any information about the rare state.

Lemma 1. If
c′( 1

2)
U ′( 1

2)β
= 1− p∗ > 1− pt, then pR = 1

2
.

Proof. It is straightforward to see that pR
(
1
2

)
= pL

(
1
2

)
. Then the first-order conditions with

respect to the choice variables can be written as:

c′
(
1
2

)
β(1− p)

= U ′
(

1

2

)
+ µR
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The value p∗ for which µR = 0, is the point past which the agent stops collecting information.

For all values of p larger than p∗, pR is constrained at 1
2
. Therefore,

c′
(
1
2

)
β(1− p)

≥ U ′
(

1

2

)

If the marginal benefit of collecting information about the rare state is lower than the

marginal cost of collecting information, when the agent hasn’t collected any information yet,

the agent won’t bother collecting any information about the rare state. Because U ′(·) and

c′(·) are positive everywhere, there is always a set of beliefs about the likely state that are

strong enough such that the rare state will be ignored. Put slightly differently, an agent

doesn’t prepare for sufficiently unlikely scenarios. This is obviously true in reality - for

example, most people don’t prepare for a meteor hitting their home. Such an event is

sufficiently unlikely that preparing for it would be a waste or resources.

Agents completely ignore sufficiently rare events. An dynamic implication of this result

comes from noticing that the term sufficiently is relative: The third result shows that under

certain conditions, the agent will not collect any information about either state when her

beliefs are the unconditional distribution.

Corollary 1. (High uncertainty can be permanent). If
c′( 1

2)
U ′( 1

2)β
≥ 1

2
then ps = πs ∀s > t.

Proof. Follows immediately from Lemma 1.

If the agent doesn’t collect information, her beliefs will be the unconditional probability

distribution. But if the unconditional probabilities are sufficiently unlikely according to

the above definition, that problem becomes permanent. If they don’t collect information

under the unconditional probability distribution, they will then again face the unconditional

probability distribution in the subsequent period. Therefore, if the agent, for any reason,

chooses not to acquire information for a particular state, and then that state occurs, the

agent will opt never to collect information again. Such a condition could be satisfied if

the marginal benefit of information is quite low at the unconditional distribution, or if the

marginal cost is quite high.
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But the corollary is stronger than that: it also implies that if the conditions are met, a

uncertainty trap is inevitable. If the agent doesn’t collect information for the unconditional

probability distribution, the agent won’t collect information for any state less likely than the

unconditional 50-50 distribution, by Proposition 1. But 1 − pt, the probability of the rare

state is weakly less than 1
2
. Therefore, if the above conditions hold, the agent will not collect

information for the rare state, ever. The rare state must occur at some point, and when it

does, the agent will permanently cease information collection.

The final result of this section shows that under certain conditions, there is a ‘steady

state’ level of uncertainty to which the agent will converge.

Proposition 2. (Uncertainty is persistent) If
c′( 1

2)
U ′( 1

2)β
< 1

2
, then there is a ‘convergent’ fixed

point p where p = pL = pt.

Proof. Proposition (2) Suppose p∗ > 1
2
. We know that p′R(pt) < 0. Therefore pR

(
1
2

)
=

pL
(
1
2

)
> 1

2
. We also know that p′L(pt) > 0 and pL(1) < 1 due to the limit conditions on c

and U . Therefore, there must exist a point p̃ such that pL(p̃) = p̃.

There is a level of uncertainty at which the agent’s beliefs will remain conditional on the

likely state continuing to occur. If the rare state occurs, uncertainty will spike up, and will

only decline as the agent collects information again.

The best way to see the implications of these result is graphically. Consider Figure 3.

On the x-axis of this figure is the agent’s beliefs today. The right-hand side of the axis is pt,

while the left-hand side of the axis is 1 − pt. The kinked, curved line is the policy function

- the agent’s information collection as a function of her beliefs today. The left-hand side

of the curve (the part that corresponds to the left-hand side of the x-axis) is pR, and the

right-hand side of the curve (the part that corresponds to the right-hand side of the x-axis)

is pL. The straight, solid line, is a 45-degree line - the set of points where beliefs in the

next period have the same distribution as beliefs today. There is an intersection between the

policy function and the 45-degree line at the green dot. Call the point of intersection p̃. If

pt = p̃, then pL(p̃) = p̃, and as long as the likely state occurs, the agent’s beliefs will always

be p̃. With beliefs of p̃, the agent’s choices of information collection will be at the green dot
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Figure 3: Plotted is the policy function of the strength of beliefs in period t+1 as a function of the probability
of a particular event occurring in period t. The kinked-curved line is the policy function, while the straight
line is a 45-degree line. The red dashed line shows a possible evolution of beliefs between the red-rare event
level of precision and the green-steady state level of precision.

and the red dot. The reason there is a kink in the curved line is because of Lemma 1 to the

left of the kink, the rare state is sufficiently unlikely, and the agent will not prepare for it -

hence pR = 1
2
. To the right of the kink, the rare state is sufficiently likely, and the agent will

prepare for it - hence pR >
1
2
.

If the rare state occurs, as is indicated by the red dot, the agent will not have collected

any information, and will therefore be very uncertain. The policy function, as illuminated

by the red-dashed line, shows that when the agent is uncertain, she will collect information

about both states (as they are equiprobable). The red dashed line, shows the evolution of

the agent’s beliefs in subsequent periods as the likely state continues to occur. If the rare

state occurred at some point before the agent’s beliefs had converged back to p̃, the process

would be set back, but would then start to converge again. One can think of this exercise as

being a two-state version of an impulse response function. Given one ‘shock’ or rare event,

followed by no other deviations, what happens to beliefs? An illustration of the evolution of
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Figure 4: Plotted is an impulse response exercise of uncertainty as a function of time. After several periods
of steady-state certainty, a rare event occurs. Upon such an occurrence, uncertainty spikes up, and beliefs
will trace out the path of the red-dashed line in the previous figure, assuming that only likely states occur
subsequently.

the agent’s beliefs can be seen in Figure 4.

This graph shows what happens to the agent’s uncertainty if the likely state happens for

several periods, the rare state happens once, and then the likely state happens thereafter.

Uncertainty remains low while the likely state occurs. There is a spike when the rare state

occurs, because the agent did not collect any information about it beforehand. Due to the

increase in uncertainty, the agent will start to collect information again, and as the likely

state continues to occur, the agent’s uncertainty will start to decline. Notice the similarity of

the dynamics of this exercise with the plots in Figure 1 - there is persistence in uncertainty!

Uniqueness The solution does not guarantee uniqueness, yet uniqueness is not required

for its results. The agent’s beliefs can only move in two ways. Uncertainty can suddenly

jump up if the rare state occurs. Uncertainty can decline slowly, according to the policy

function, as the likely state occurs. As the likely state occurs, beliefs will converge to the

first intersection between the policy function and the 45-degree line seen in Figure 3. If

there are other, additional intersections for higher values of pt, they can never be reached,

as beliefs converge to the first intersection, and cannot move above it.
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The key link between periods - in fact, the only link between periods, is that collecting

information in one period affects how information can be collected in the next. It is the sole

mechanism that delivers persistence in information collection, and therefore, persistence in

uncertainty. This is the sole dynamic link for all versions of the model presented in this

paper.

2.5 Discussion of Key Assumptions

There are two key assumptions in this model. The first is the structure of information col-

lection and revelation. The second is the cost structure of information. Both are important,

but the model’s results can withstand loosenings of both.

Information Structure: The big assumption in the structure of information collection is

that the agent takes her beliefs in period t about the likelihood of states in period t + 1 as

given. This precludes the possibility that the agent can collect information about t + 1 in

period t - she can only collect information about period t+ 2 in period t, even though that

information will only be revealed in t+ 1. As I show in the appendix, this assumption is for

tractability purposes - the results will hold even if it is relaxed.

From a theoretical standpoint, this paper is interested in contingent information acqui-

sition, so this is the simplest setting to isolate that channel. Relaxing this restriction, and

allowing the agent to collect information in time t about the state in t+1 as well as contingent

information about t+2, would weaken the propositions quantitatively, but not qualitatively.

Ultimately, contingent information about t+ 2 can only be collected once beliefs about t+ 1

are established. If the agent can collect information about t + 1 at time t, she will merely

start from a higher baseline for her contingent information collection.

From an intuitional standpoint, it is not unreasonable to think that agents will try to

form contingent plans (be they investment plans, spending plans, etc), taking their beliefs

about the future as given. In planning for the results of elections, referendums, etc, investors

make plans for any outcome. They may try to reduce their uncertainty about the event, but

they will allocate their resources in conditional information collection based on their beliefs

about the outcome itself.
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Cost Structure: The main assumption in the cost of information collection is that it is

equally costly to collect information about either future state of the world. From a theo-

retical standpoint, this assumption improves tractability. This assumption is also justified

by the more detailed framework of Woodford (2012). There is, as was mentioned earlier,

also substantial support in the cognitive experimental literature for the static results that

obtain from such an assumption. From an intuitional standpoint, one might think that it is

actualy costlier to collect information about low-probability states, and cheaper to collect

information about high-probability states. Such an alteration of the cost structure, would

actually strengthen the results by making it even less likely that the agent would collect

information about rare states. The cost structure that would weaken, or even negate the

results of the paper is one where it is costlier to collect information about high-probability

states. Such a cost structure does not seem intuitive, so I do not consider it.

This section presented the simplest setting for the model’s mechanism: that an agent

being uncertain today makes it likely that the agent will be uncertain in the next period.

However, in order to make such a mechanism portable to more general models, I will need

to demonstrate that it works under more general, continuous distributions.

3 Continuous-State Model

The previous section laid out an illustration of the paper’s key mechanism. In this section,

I extend the model both to generalize the results, and to show how the mechanism could be

used in larger, economic models. The portability achieved with this section ensures that the

results of this paper are not so specialized as to be unhelpful to standard economic models.

3.1 Model Structure

State Structure: The most important difference between this section’s model and the pre-

vious section’s model is the state space. There are an infinite number of possible states,

indexed by the real line. To fix intuition in this setting, suppose that each state of the world

corresponds to a different possible price change - that is the state x corresponds to ‘the
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market changes by x next period’. The probability density function over the states, is given

by a normal distribution with mean 0 and variance σ2. Therefore P (st+1 = x) = φ(x), where

φ is the probability density function of a normal with variance σ2. I will generally refer to

the distribution in terms of its precision, τ = 1
σ2 .

Agent: As before, there is one agent. The agent enters period t with an information set

It that informs her beliefs. Given the change in the state structure, her beliefs in period t

about period t + 1’s state are given by a normal distribution with variance σ̂2
t ≤ σ2. The

mean of the agent’s beliefs depends on the information set It: E[st+1|It] = µt. Therefore

P (st+1 = x|It) = ϕt(x) where ϕ is the probability density function of a normal with variance

σ̂2
t . I will refer to the agent’s beliefs in terms of their precisions τ̂t = 1

σ̂2
t
.

Preparation: Preparation is very similar to the previous setup. Conditional on her

beliefs ϕt(x), the agent can choose in period t to prepare for each of the possible states that

could occur in period t+ 1. That is, the agent can prepare for the market changing in value

in the next period, by collecting information about what will happen conditional on each

of those possibilities. Preparation takes the form of picking information sets It+1,x. When

state x occurs in period t+ 1, the agents beliefs will be:

ϕt+1(x) = V [st+2|It+1,x, st+1 = x] ∀x

When one of the possible states occurs, the agent’s preparation for that state comes to

fruition. Information forms her beliefs, conditional on the state. For simplicity, I model this

decision as the agent directly selecting the precision of their posterior beliefs, τ̂t+1(x), which

is isomorphic to them choosing It+1,x.

The intuition behind this structure is that an agent has some beliefs about what will

happen to the market in the next period. Having placed trades that make use of those

beliefs, she can also prepare for what will come next. If the market crashes tomorrow, will it

recover? If the market experiences a modest gain, what will happen next? Collecting infor-

mation about those possibilities will allow the agent to react to each quickly and profitably.
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Therefore, she would want to spend resources to be better prepared.

Agent’s Costs: Costs are modeled in the same way as the previous setup. Improving

the quality of preparation is costly. There is no fixed cost of preparing, but there is a cost

function c(τ̂t+1(x)) associated with increased accuracy of future beliefs. That cost function

is the same for all states x.

Agent’s Objective: The agent’s objective is modeled very similarly to the previous

setup. The agent has a period-by-period utility function, which has one input: the precision

of the agent’s beliefs. As before, the utility function is independent of the conditional mean

of beliefs, which, as before, is not a crucial assumption.

Now that the setup of the model has been laid out, I can state the agent’s problem.

Formally, the agent’s problem in period t is given by the following Bellman equation:

V (τ̂t) = max
τ̂t+1(x)

U(τ̂t)−
∫
c(τ̂t+1(x))dx+ β

∫
ϕ(x)V (τ̂t+1(x))dx−

∫
µx (τt+1(x)− τ) dx

The agent begins period t with a certain precision of beliefs τ̂t. As before, the value is broken

into several components. First, there is the utility function, U , that depends on the strength

of the agent’s beliefs. Then there is the cost function, c, that depends on the amount the

agent prepares for state x. Finally, there is the continuation value, which is how the agent’s

beliefs in the next period will affect her preparation in the next period. The agent’s choices

are subject to inequality constraints, that her subjective beliefs be weakly stronger than the

unconditional distribution. The Kuhn-Tucker conditions associated with those constraints

are represented by the last integral. Notice again, that the key difference from a more typical

Bellman formulation is that the state variable determines the distribution over which the

continuation value is calculated.

3.2 Solution

Assumptions: To guarantee a solution, I need to impose some structure on the functions

mentioned above. Namely I assume that:
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1. U ′(·) > 0. This assumption states that the agent prefers stronger beliefs to weaker

ones.

2. c′(·) > 0. This assumption states that stronger beliefs are more costly to obtain than

weaker ones.

3. c′′(·) > U ′′(·). This assumption states that the marginal cost of stronger beliefs in-

creases faster than the marginal benefit - a technical assumption to guarantee an inte-

rior solution.

These assumptions are relatively standard, in that they are satisfied by most existing utility

and costly information forms, and are sufficient to guarantee that interior solutions exist.

3.3 Results

All the major results of the previous section continue to hold here. The agent will collect

more information about a state, the more likely it is.

Proposition 3. If ϕt(x) > ϕt(y), then τ̂t+1(x) > τ̂t+1(y)

Proof: See Appendix

An agent focuses her preparation on states of the world she believes likely to occur, as

those preparations are likely to prove useful. Agents prepare for events relative to how likely

they are. The more likely, the more they prepare; the less likely, the less they prepare.

The second result is that if the agent believes a certain state is sufficiently unlikely, she

will not collect any information about it.

Lemma 2. If ϕ(x) < c′(τ)
βV ′(τ)

, then τ̂t+1(x) = τ .

Proof. If the above condition holds, then the first order condition

βϕ(x)V ′(τ̂t+1(x)) = c′(τ̂t+1(x)) + µx

will only hold if µx > 0, which means that the inequality constraint is binding.
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If the marginal benefit of collecting information about the a state is lower than the

marginal cost of collecting information, when the agent hasn’t collected any information yet,

then the agent won’t collect any information about that state. The agent won’t prepare for

sufficiently unlikely scenarios.

Agents completely ignore sufficiently rare events. An dynamic implication of this result

comes from noticing that the term sufficiently is relative: The third result shows that under

certain conditions, the agent will not collect any information about either state when her

beliefs are the unconditional distribution.

Corollary 2. (High uncertainty can be permanent). If φ(0) < c′(τ)
βV ′(τ)

, then τ̂t+s(x) = τ ,

∀s > 0,∀x.

Proof. Follows immediately from Lemma 2.

If the agent doesn’t collect information, her beliefs will be the unconditional probability

distribution. But if the most likely event under the unconditional distribution does not

warrant any preparation, then the problem becomes permanent. If the agent doesn’t collect

information for the most likely event under the unconditional distribution, she won’t collect

information about any event under the unconditional distribution, which means that no

matter what state occurs, she will face the unconditional distribution again in the next

period, and every period thereafter.

The final result of this section mirrors that of the last. Under certain conditions, there

is a ‘steady state’ level of uncertainty to which the agent will converge.

Proposition 4. (Uncertainty is persistent) There is a τ̃ such that if τ̂t+1(x) = τ̃ , then

τ̂t+2(ϕ(µt)) = τ̃ .

Proof: See Appendix

The best way to see the implications of these result is graphically. Consider Figure 5. On

the x-axis of this figure is the probability of an event according to the agent’s beliefs. Points

close to the origin are less likely according to her beliefs, and points farther away are more

likely according to her beliefs. The kinked, curved line is the policy function - the agent’s

information collection as a function of a state’s likelihood according to her beliefs today. It
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Figure 5: Plotted is the policy function of the precision of beliefs in period t + 1 as a function of the ex-
ante probability of an event in period t. The kinked-curved line is the policy function, the straight line is a
45-degree line. The red dashed line shows a possible evolution of beliefs when, conditional on one rare event
occurring, only mean events occur subsequently (a standard impulse-response exercise).

plots the probability of the most likely event in period t+2 as a function of the agent’s beliefs

in period t+ 1. In a standard ‘impulse response’ exercise, one would examine the impact of

one shock, followed by no further shocks. In this case, no shock is equivalent to the average,

or expected event occurring each period. Therefore, an impulse response would involve some

unlikely event occurring, and then the policy function guiding the agent’s beliefs back to

their steady state levels. The function is qualitatively very similar to the two-state case of

the previous section.

This section presented a more portable setting for the model’s mechanism: that an agent

being uncertain today makes it likely that the agent will be uncertain in the next period.

By using normal distributions on a continuous state space, the mechanism is ready to be

brought into a larger model. In the next section, I present one example of such a model.
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4 Application

Having described a general form of the mechanism, we now import it into a larger, applied-

theory setting. In this section we embed the the continuous-state model of uncertainty

persistence from the previous section in a financial market. In doing so, we can see the effects

of persistence in uncertainty on financial and economics variables such as bid-ask spreads,

volatility, dispersion of beliefs, and volume of trade. This application shows the ability of

the mechanism to deliver patterns observed in data. This application is illustrative, and is

by no means the only one to which the mechanism is suited.

4.1 Model Structure

State Structure: The information structure and cost structure of the previous two

sections still hold in this section. The correlate of the agent in the previous two sections is

an informed trader in this section. She takes her beliefs in time t over the possible states

of the world in t + 1 as given. At time t, she can prepare by collecting information about

period t+ 2 for each possible future state of the world in t+ 1.

Financial Market: The key identifying structure to this model is that the states of the

world are defined as possible fundamental values of an asset. The unconditional distribution

of fundamental values at time t + 1 is given by Ft+1 ∼ N (Ft, σ
2). The unconditional

volatility of fundamental values is constant across time, and the unconditional process of the

fundamental value is a random walk.

Agents: Unlike the previous sections, there are three types of agents in this model. There

are a continuum of perfectly competitive market makers, who observe public information,

and set bids and asks. The remaining two types of agents are traders, noise and informed.

Combined they form a unit continuum. One fraction, comprising a measure T , are informed

traders. These traders are the correlate of the agent in the previous section12. They are able

to collect state-contingent information, and can trade with the benefit of that information.

The remaining fraction, comprising a measure 1 − T , are noise traders. These traders are

12. Here we treat the continuum of informed traders as a representative trader, who trades in a block.
Alternatively, one could think of this as enforcing a symmetric equilibrium. The two alternatives are, ex-
ante, identical.
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present to provide liquidity in the model - they participate without heeding public or private

information.

Trading: Each type of trader can buy one unit of the asset, sell one unit of the asset,

or abstain from trade each period. Half the noise traders will always buy one unit of the

asset, and half the noise traders will always sell one unit of the asset. The informed traders

will base their trading decision on their information and on prices. If their beliefs lie above

the market makers’ asks, they will buy one unit of the asset. If their beliefs lie below the

market makers’ bids, they will sell one unit of the asset. If their beliefs lie within the market

makers’ bid-ask spread, they will not trade.

Signals: There are two types of signals, public and private. The public signal, yt is

distributed yt ∼ N
(
Ft+1, σ

2
y,t

)
. It is revealed to all agents (market makers, informed traders,

and noise traders). All agents will have updated beliefs over Ft+1 after seeing yt that can

be characterized as: N (µpub,t, σpub,t) where µpub,t ≡
1

σ2y,t
yt

1
σ2

+ 1

σ2y,t

, and σ2
pub,t ≡ 1

1
σ2

+ 1

σ2y,t

. We label

the probability distribution function associated with the updated beliefs φpub,t. There is a

private signal zt, which is distributed xt ∼ N
(
Ft+1, σ

2
x,t

)
. It is revealed only to informed

traders.

4.2 Statements of problems

There are two sets of decisions in the model. There are pricing and trading decisions that

need to be made after all information has been revealed to the relevant agents. There are

information decisions that need to be made beforehand. I will proceed backwards through

these decisions.

4.3 Pricing and Trading Decisions

There are two stage 1 decisions - a pricing decision by market makers, and a trading decision

by traders.

Informed Traders Trading Decisions: The informed traders will buy one unit of the

asset if their beliefs lie above the market makers’ asks, and sell one unit if their beliefs lie
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above the market makers bids. Therefore, their trading problem is:

max {(bidt − s), (s− askt), 0}

Where s = E[Ft+1|public signal, private signal]. Given the public and private signals, we can

express s as

s =

µpub,t
σ2
pub,t

+ xt
σ2
x,t

1
σ2
pub,t

+ 1
σ2
x,t

Notice that agent’s beliefs about an asset’s fundamentals in a subsequent period are dis-

tributed normally, which allows for a quick relation, empirically to the VIX. The VIX mea-

sure’s agents beliefs about volatility within a 30-day period.

Market Makers’ Pricing Decisions: The market makers will observe public informa-

tion and set prices - a bid and an ask. They are modeled after Glosten and Milgrom (1985).

The bid is the price at which market makers buy the asset. The ask is the price at which

market makers sell the asset. In order to understand their decision, we must understand

the dispersion of possible beliefs. The dispersion allows us to understand the probabili-

ties that the market maker will receive a buy order and a sell order. The dispersion is

σ2

disp,t =

1

σ2x,t(
1

σ2x,t
+ 1

σ2
pub,t

)2 . The market making sector is perfectly competitive, so each market

maker sets prices to satisfy a zero-profit condition. These zero-profit conditions are written

as follows:

Πask =

∫
φpub,t(x)

(
(1− Φdisp,x(ask))(1− T ) +

T

2

)
(ask − x)dx = 0 (2)

Πbid =

∫
φpub,t(x)

(
Φdisp,x(bid)(1− T ) +

T

2

)
(x− bid)dx = 0 (3)

where φdisp,x ∼ N

( µpub,t

σ2
pub,t

+ x

σ2x,t
1

σ2
pub,t

+ 1

σ2x,t

, σ2

disp,t

)
. The market makers make zero profit in expecta-

tion.
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4.4 Information Decisions

There’s only one stage 0 decision - a state contingent information decision made by informed

traders. Their decision in stage 0 of period t, given the quality of public signals, is to select

a quality of a private signal on each possible realization of Ft+1. Formally, given σ2
y,t, the

informed trader’s decision is:

V (Ft, σ
2
y,t) =

∫
max
σ2
x,t(Ft)

φ(Ft+1)

∫ ∫
p(public signal = x) (p(private signal = y)U(x, y)dy) dx

+β
[
φ(Ft+1)V

(
Ft+1, σ

2
y,t+1

)]
− cν(σ2

x,t(Ft+1))dFt+1 (4)

where ν is a convex decreasing function such that ∂2ν

∂σ2
δ
2 >

∂2U

∂σ2
δ
2 everywhere. Note the parallel

between this setup and that of the previous two sections. The relative convexity assumption

on ν is meant to ensure interior solutions. Given the parallel of the setups, we can derive

some of the same results.

4.5 Propositions

The first result shows that the utility function satisfies the assumption made in the previous

sections - namely, that agents value information. All of the theoretical results of this section

assume a known, exogenous process for public signal precision.

Proposition 5. Utility decreases in the noise of private signals: ∂U
∂σx

< 0.

The better the precision of a private signal, the higher the agent’s utility. This result

means that we can use the mechanism of the previous two sections - one of the fundamental

assumptions in each, was that utility was increasing in signal precision. Now, we can also

show that the accuracy of a signal is inversely proportional with the likelihood of the state

occurring.

Corollary 3. For any given c, δ, signal noise decreases in the liklihood of the state: ∂σ2
x(F )

∂φ(F )
≤

0.

This result confirms the intuition from the previous sections: information is a good, albeit

a costly one. Next we show that the average probabilities of events are lower after rare events

28



than they are under common events. Once that’s shown, given the corollary above, we can

infer that a rare event will trigger poor subsequent information collection on average, while

a common event will trigger good subsequent information collection on average.

Corollary 4. For any given c, δ, and for any two points F1 and F2, such that φF,t(F1) >

φF,t(F2). Then at time t+ 1, EF1 [φF,t+1(F )] > EF2 [φF,t(F )].

Thus the main results of the previous sections hold: first, statically, that agents collect

more information about states the more likely they are, and second, dynamically, that poor

information collection in a state reduces the condition average state-contingent information

in subsequent periods. Now, for the purposes of simulation, we introduce one other agent

and decision.

4.5.1 Public Entity

For the purposes of simulation, I now allow the precision of the public signal to be endoge-

nous. The question here is what happens to financial variables, when public information

suffers from the same patterns as private information. Public preparation is likely to be

poor for rare events. But information types are strategically substitutable, so perhaps poor

public information would encourage traders to prepare more for rare events, counteracting

the previous results. To analyze this, I postulate a public entity who chooses the quality of

state-contingent public information. The public entity tries to maximize state-contingent in-

formation subject to a cost - similar to the problems faced by the privately informed traders.

The public entity works to select conditional signal quality, σ2
y,t for each potential value of

Ft to maximize expected accuracy:

∫
min
σy,t(F )

φF,pub,t(F )σ2
pub,t(σ

2
y,t(B))− cpubνpub(σ2

pub,y,t(F ))dφF,pub,t (5)

where νpub is a convex function that satisfies the condition that
∂2νpub

∂σ2
y
2 >

∂2σ2
pub

∂σ2
y
2 everywhere.

The public entity seeks to be accurate, but the particular objective function is not overly

important. One could think of the public information as being reports or actions from

public institutions like the Federal Reserve or the government, or research reports published
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by financial institutions. These changes in the structure of public information no longer allow

us to describe patterns analytically, but simulations still permit insight into the dynamics.

4.5.2 Dynamic Equilibrium

Given values of {F, σ2, σ2
F,t, c, cpub}, a dynamic equilibrium is defined by a choice of σy by

the public entity that solves equation 5 a choice of a policy function σx(µF , σ
2
F , σ

2
x) by the

traders that satisfies equation 4, individual decisions to buy, sell, or abstain by traders to

solve equation 4.3, and a choice of a bid and an ask by Market Makers to solve equations 2,

given observed values of {σy,t, σx,t}, and a public signal.

4.6 Predictions and Spillovers

I present the simulation of the model statically and dynamically.13 First, statically, Figure 6

shows the values of several financially relevant variables as functions of the ex-ante probability

of events. The x-axis on all three panels is φ(Ft). Panel (a) shows the variance of public

and private signals, which are both, unsurprisingly, declining in the probability of the event:

the more likely the event, the higher the quality of public and private information. This

initial finding spills over to other variables. Panel (b) shows that Volatility,14 Uncertainty,15

Dispersion, and Bid-Ask spreads are all lower after relatively likely events, than they are

after rare events. Finally, panel (c) shows that agents trade more aggressively after high

probability events, because they are better prepared for what happens next, and can trade

strongly on their relatively accurate beliefs.

These results all correlate to the static version of the model. Unlikely events have different

properties than likely events within a period. The next presentation has to do with the

dynamic implications of those properties. For this I present an impulse-response exercise. I

suppose that Ft makes a three standard deviation move between periods one and two. Then

I assume that Ft+1 immediately moves back to it’s previous level, where it subsequently

remains. Put differently, F1 = Fi, ∀i 6= 2.

13. The parameter values here are σ2 = 10, cpub = 0.4, T = 0.35, β = 0.95, c = 25, and νpub(x) = ν(x) = 1
x .

This is not a calibration, but is meant only to be illustrative.
14. The expected variation of the fundamental conditional only on public information
15. The expected variation of the fundamental conditional on public and private information
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(a) Informational Investment (b) Financial Variables (c) Asset-Demand

Figure 6: Plotted is a static snapshot of the applied model. The x-axis of all three plots is the ex-ante
probability of an event. Figure (a) captures the variance of private and public signals. Figure (b) captures
Uncertainty, Volatility, Dispersion, and Bid-Ask Spreads. Figure (c) captures the volume of trade. The first
six variables all decline the more ‘expected’ an event was. The last increases.

The purpose of this exercise is to show how one rare event in an otherwise unconditionally

random walk process can trigger lasting effects in uncertainty and volatility. The results are

shown in Figure 7. Unsurprisingly, given the previous graph all the variables spike up in

period 2, which when the first big change in the fundamental occurs. Uncertainty remains

high when the second big change occurs, but drops slightly. The reason for this is important:

when uncertainty is high in period 2, the variance of agents’ conditional beliefs increase,

which makes subsequent large movements relatively more likely. Therefore an identically

sized move would be relatively more expected, lowering uncertainty slightly in period 3.

This slight reduction in uncertainty is a distinguishing feature of this model from a standard

parameter-learning model, as was discussed in the introduction. Between periods 3 and 9,

the fundamental stays at exactly the same value, which means that any subsequent dynamics

in these graphs is due to the natural processes of the mechanism of the model. As we can see

the high levels of uncertainty in periods 2 and 3 persist, as agents find themselves unable to

prepare well for even the most likely (no change in F ) events. However, with each passing

period, they find that the event they prepared the most for (again, no change in F ) occurs,

thus placing them in a slightly better position to prepare subsequently. This continues as

the agents converge to their steady state levels of uncertainty and risk. All of these first five

panels, whose variables were introduced in the previous Figure, exhibit the same dynamics.

A point of particular interest comes from the last panel. A standard hypothesis about
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Figure 7: Plotted are six variables responding to a three-standard deviation move in the price of the asset
and subsequent recovery. In period 2 the price moves by three standard deviations. In period 3, the price
reverts to its period 1 level, and remains there subsequently. All variables respond very strongly to the first
movement, and slightly less strongly to the second movement. However, starting in period 4, although the
price is no longer moving, the mechanism of the model nonetheless generates persistence in the variables.

human behavior is that when we are uncertain, we try harder to learn. That intuition is borne

out by this paper’s mechanism. The last panel plots the total amount spent on information

collection period by period. The point of emphasis thus far has been that when agents are

uncertain, they don’t know which states of the world to prepare for, so on average they are

less prepared than when they are certain. However, when they are uncertain, they actually

spend more in sum on information than when they are certain. This finding comes because

agent’s can’t ignore anything when they are uncertain - anything could happen! Therefore,

they must prepare at least a little for many many more states than they would if they were

certain.

One of the benefits of this type of application is that it contains a measure of uncertainty

and expected volatility that follow an autoregressive pattern, which is borne out empirically

by the VIX, while the underlying process itself follows a random walk, which is a standard

assumption. This paper’s mechanism is able to wed those two seemingly conflicting concepts

relatively tightly.
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5 Discussion

Comparison to Parameter-Learning

As was mentioned in the introduction, parameter learning can also yield spikes and persis-

tence in uncertainty. If an agent who does not know how volatile a process (for example,

stock prices) is. She can try to learn what the volatility is by observing the process for a

while. The more data she collects, the better her estimate of the volatility. If a very unusual

draw is observed, the agent will change her volatility estimate sharply, which will look like a

big change in uncertainty. The agent will require many more observations for her estimate

to stabilize, so the change will persist for some time. Parameter learning is an elegant and

intuitive way to understand how agents update beliefs, and it is undoubtedly a real part of

our decision-making processes. However, the new theory laid out in this paper differs from

parameter learning in several ways:

First, this model requires fewer assumptions about the data-generating process. One

feature of parameter-learning agents is that they learn very quickly. Therefore, in order

for a parameter-learning model to generate repeated, persistent spikes in uncertainty, the

parameter the agents learn about must change over time. Otherwise, the agents would learn

its value quickly and never be uncertain again. On the other hand, almost no assumptions

on the data are needed in this paper’s model to generate such repeated spikes. In fact, for

the model in this paper, the data generating process can even be unconditionally i.i.d. and

still generate repeated, persistent uncertainty spikes.

Second, this paper’s formulation of uncertainty can only jump up, and never down, which

is a feature of the world. When agents are uncertain in this model, they can only gradually

regain certainty through preparation. Even if volatility vanishes when agents are uncertain,

the mean outcome in a dispersed distribution is still not very likely, so agents will not be

much better prepared for it than others. In a parameter-learning context, a sudden drop in

volatility should cause a sudden drop in the estimation of the volatility parameter. We do

not typically observe sudden reductions in uncertainty, so this difference is a feature of this

paper’s model.

Third, this model matches patterns in uncertainty and risk during high volatility periods.
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According to a parameter-learning framework, sustained periods of high volatility should see

sharp and continued increases in estimated volatility. The more high volatility a parameter-

learning agent sees, the more confident they will be that their estimate of volatility should

be high. However, in this paper’s model sustained periods of volatility will cause spikes in

such measures that subside as well. The basic intuition for why, is that uncertain agents

in this paper will view future large shocks as being relatively more likely than when they

were certain, and will thus prepare for them slightly more for them when they are uncertain.

Such a pattern is observable in Figure 1 even during periods of sustained volatility like the

financial crisis.

Definition of Uncertainty

Finally, this paper is testing a fundamentally different type of uncertainty from that gen-

erated by parameter-learning models. Parameter-learning uncertainty refers to a lack of

understanding of how the world in which they live works. Seeing an unlikely event will make

parameter learning agents reevaluate how likely that event is in the first place. Therefore,

uncertainty in such a model refers to variance in agents’ beliefs about a parameter’s value

that changes each period as their information sets change. Put more formally, uncertainty

in a parameter learning model refers to Vt[X|It], the variance in agents’ beliefs at time t,

conditional on any and all information available to them in time t about a deep parameter

X that will never be directly observed.

By contrast, agents in this paper’s model know exactly how the world in which they

live works. Seeing an unexpected event, will not cause them to revise their beliefs about

how likely the event was. However, due to their lack of preparation for unexpected events,

such events will make them very uncertain about what happens next. Uncertainty in this

paper refers to the variance in agents’ beliefs about a variable that will be revealed to them

imminently. More formally, uncertainty in this paper refers to Vt[Xt+1|It], the variance in

agents’ beliefs at time t, conditional on any and all information available to them in time

t about a variable X that will be revealed to them in the subsequent period. This latter

definition of uncertainty conforms to how uncertainty is described in the uncertainty shocks

literature, started by Bloom (2009).
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6 Conclusion

I have presented and solved a simple, tractable model that uses a cognitive feature of our

attentional makeup to deliver observed patterns in uncertainty dynamics. Specifically, I

employ the concept of preparation - that agents distribute their attention over possible states

of the world to be better prepared for their occurrence. When unlikely or rare states occur,

agents have not prepared for them, and face high levels of uncertainty. High uncertainty

makes it harder for agents to prepare subsequently, as they do not know where to focus

their preparations. Therefore, uncertainty begets itself, persisting endogenously, even when

the underlying states of the world exhibits no persistence. I showed this mechanism for

persistence in a two-state case for intuition, and then generalized to a continuous state

case. Finally, I embedded it in a larger model to show its portability and tractability.

I then discussed alternative applications, distinguishing features of this new model from

more standard parameter-learning models, and definitions of uncertainty. I believe that

this mechanism provides a fundmanetally new perspective from which to analyze changes in

uncertainty.
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A Proofs

Proof. Proof that the Bellman is a contraction. The Bellman equation is:

V (pt) = max
pL,pR∈[ 12 ,1]

U(pt)− c(pL)− c(pR) + βptV (pL) + β(1− pt)V (pR)

I show here that the equation satisfies Blackwell’s sufficient conditions and thus describes

a contraction mapping. The value function V is bounded, as 1
2
≤ pt ≤ 1, and U is a real-

valued function. The Value function is a mapping from
[
1
2
, 1
]

to

[
U( 1

2)
1−β ,

U(1)
1−β

]
. Therefore the

Bellman equation describes a self-map on the space of bounded functions B(X). To show

that the mapping T from space of functions onto itself is a contraction, we must show that:

1. Monotonicity: if f, g ∈ B(X), and f(x) < g(x) for all x ∈ X, then Tf(x) ≤ Tg(x) for

all x ∈ X.

2. Discounting: For γ ∈ R, there exists a β such that for all f ∈ B(X), and all x ∈ X,

T (f + γ)(x) ≤ Tf(x) + βγ.

First, monotonicity:

Tf(pt) = max
pL,pR inf[ 12 ,1]

U(pt)− c(pL,f )− c(pR,f ) + βptf(pL,f ) + β(1− pt)f(pR,f )

≤ max
pL,pR inf[ 12 ,1]

U(pt)− c(pL,f )− c(pR,f ) + βptg(pL,f ) + β(1− pt)g(pR,f )

≤ max
pL,pR inf[ 12 ,1]

U(pt)− c(pL,g)− c(pR,g) + βptg(pL,g) + β(1− pt)g(pR,g)

= Tg(pt)

Where the first equality is a definition, the second follows from the fact that f < g every-

where, and the third follows from the the agent’s optimization. The last equality is again a

definition.
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Second, discounting:

T (f + γ)(pt) = max
pL,pR inf[ 12 ,1]

U(pt)− c(pL,f )− c(pR,f ) + βptf(pL,f ) + β(1− pt)f(pR,f ) + βγ

= Tf(pt) + βγ

Proof. Proposition(1)

The first order conditions for the agent’s problem are:

V ′(pt) = U ′(pt) + β(V (pL)− V (pR))

c′(pL) = βptV
′(pL) + µL

c′(pR) = β(1− pt)V ′(pR) + µR

µL

(
pL −

1

2

)
= 0

µR

(
pR −

1

2

)
= 0

Substituting, we get that:

c′(pL)− µL
βpt

−U ′(pL)−β(V (p∗L(pL))−V (p∗R(pL))) =
c′(pR)− µR
β(1− pt)

−U ′(pR)−β(V (p∗L(pR))−V (p∗R(pR))) = 0

If µL and µR are both non-zero, then the solution is trivial. Let us then consider the case

where µL = µR = 0.

c′(pL)

βpt
−U ′(pL)−β(V (p∗L(pL))−V (p∗R(pL))) =

c′(pR)

β(1− pt)
−U ′(pR)−β(V (p∗L(pR))−V (p∗R(pR))) = 0

Given that c′′ > U ′′, the left hand side of the above equation increases for a marginal increase

in pL (by the envelope theorem, since the V s are already optimized, a marginal increase in

pL does not change their value), and the right hand side is similarly marginally increasing

in pR. Therefore if either pL and pR are interior solutions, p′L(pt) ≥ 0, and p′R(pt) ≤ 0.
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Now consider the case where µR = 0 and pL = 1
2
.

c′
(
1
2

)
− µL

βpt
− U ′

(
1

2

)
=

c′(pR)

β(1− pt)
− U ′(pR)− β(V (p∗L(pR))− V (p∗R(pR)))

Because pt ≥ 1
2
, in order for the above equality to be satisfied, it must be the case that

µL < 0, which is a contradiction. Therefore it can never be the case that µR = 0 while

µL > 0. Next consider the case where µL = 0, and pR = 1
2
.

c′(pL)

βpt
− U ′(pL) =

c′
(
1
2

)
− µR

β(1− pt)
− U ′

(
1

2

)

In the absence of the binding constraint that pR ≥ 1
2
, increasing pt would lead to a decrease

in pR, all else constant. Therefore, the higher pt, the lower the ‘shadow value’ of pR, and the

higher the shadow cost. If µ′R(pt) > 0, then p′L(pt) > 0.

Under all conditions, p′L(pt) ≥ 0, and p′R(pt) ≤ 0, with equality only when the constraint

is binding.

Proof. Proposition (3) The first order conditions to this problem are:

V ′(τ̂t) = U ′(τ̂t) +

∫
βϕτ (x)V (τ̂t+1(x))dx

βϕ(x)V ′(τ̂t+1(x)) = c′(τ̂t+1(x)) + µx

Substituting as before we get:

U ′(τ̂t) +

∫
βϕτ (x)V (τ̂ ∗t+1(x))dx =

c′(τ̂t(x))− µx
βϕ(x)

By the same envelope theorem argument as the binary state case, along with the relative

convexities of c and U , we get that τ̂ ′t(ϕ(x)) ≥ 0.

Proof. Proposition (4) If limτ̂→∞
c′′(τ)
ϕτ (x)

> U ′′(τ), then limϕ→∞ τ̂
′(f) < 1. Consider the vari-

able g(τ̂) = ϕ(µ, τ). Then, g′(τ̂) < 1 in the limit. We also know that g′(0) = τ > 0, which

means that there is a point τ ∗ such that g(τ ∗) intersects the 45-degree line at least once,

yielding a fixed-point.
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Proof. Proposition (5)

First, we can rewrite equations 2 as zero-profit conditions as follows:

T

2
(ask− µp) =

∫
φp(x)(ask− x)(1− Φdisp,x)(ask)dx(T − 1)

T

2
(µp − bid) =

∫
φp(x)(x− bid)Φdisp,x(bid)dx(T − 1)

The left-hand side of these expressions is the profit earned from noise traders - T
2

purchases

or sales, which in expectation are equal to µp. On the right hand side is the expected loss

from adverse selection to informed traders. Market Maker profit is increasing in the ask and

decreasing in the bid, both by extracting more from noise traders, and giving away less to

informed traders.

Focusing just on the bid equation (the ask follows similarly):

∂

∂σ2
γ

∫
φp(x)(x− bid)Φdisp,x(bid)dx(1− T )

∝ ∂

∂σ2
γ

∫
φp(x)(x− bid)Φdisp,x(bid)dx

=
∂

∂σ2
γ

∫ bid

−∞
φp(x)(x− bid)Φdisp,x(bid)dx+

∂

∂σ2
γ

∫ ∞
bid

φp(x)(x− bid)Φdisp,x(bid)dx

=

∫ bid

−∞
φp(x)(x− bid)︸ ︷︷ ︸

< 0

∫ bid

−∞

∂

∂σ2
γ

φdisp,x(y)dy︸ ︷︷ ︸
> 0

dx

+

∫ ∞
bid

φp(x)(x− bid)︸ ︷︷ ︸
> 0

∫ ∞
bid

∂

∂σ2
γ

φdisp,x(y)dy︸ ︷︷ ︸
< 0

dx

< 0

Therefore, by similar logic we have that an decrease in σ2
γ, holding all other variables fixed,

results in lower profits for the market maker.

In order to increase profits again, the market maker will need to lower the bid and raise

the ask, to make up the difference from noise traders. Thus, an decrease in σ2
γ increases the
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transfer from noise traders to informed traders in expectation. So U depends negatively on

σ2
γ.

Proof. Corollary (3)

The necessary condition is that dU
dφ(Bt)

=> 0. This is trivially true.

Proof. Corollary (4)

If φB,t(B1) > φB,t(B2), then σγ,t(B1) < σγ,t(B2). Then VB1 [φB,t+1(B)] < VB2 [φB,t(B)]. So

EB1 [φB,t+1(B)] > EB2 [φB,t(B)].

Extension to contemporaneous preparation

In this extension, I consider the possibility that an agent in period t can change her beliefs

about the events in period t + 1 by collecting information. In the original continuous-state

formulation, the agent’s problem was:

V (τ̂t) = max
τ̂t+1(x)

U(τ̂t)−
∫
c(τ̂t+1(x))dx+ β

∫
ϕ(x, τ̂)V (τ̂t+1(x))dx−

∫
µx (τt+1(x)− τ) dx

If the agent could change her beliefs about period t + 1, that means she could change τ̂t.

That variable shows up in two places - the utility function, and the continuation value. I

will continue to assume that changing her beliefs about t+ 1 today will not affect her utility.

That is because the assumption of the benefit to the utility function is that the agent can

use her information quickly. If she must collect information today, she cannot also take

actions that benefit her today. However, by collecting information today, it can aid in her

preparation for the next period. Therefore, her new problem will look like this:

V (τ̂t) = max
s,τ̂t+1(x)

U(τ̂t)−
∫
c(τ̂t+1(x))dx+β

∫
ϕ(x, τ̂+s)V (τ̂t+1(x))dx−

∫
µx (τt+1(x)− τ) dx−cs(s)

The first order conditions here are:

U ′(τ̂t) + c′s(s) =
c′(τ̂t(x)) + µx
βϕ(x, τ̂ , s)
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The envelope argument of the previous proofs still hold, and it is still the case that τ̂t+1 is

an increasing function of ϕ for any values of τ̂ and s. As long as c′s, c
′′
s > 0, it is also true

that agents will not eliminate future uncertainty, which means that the persistence result

will hold as well. How strongly it holds will be a function of how easy it is to scramble for

information.
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