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Abstract. Disagreement persists over issues that have objective truths. In the presence of
increasing amounts of data, such disagreement should vanish, but it is nonetheless observa-
ble. This paper studies persistent disagreement in a model where rational Bayesian agents
learn about an unobservable state of the world through noisy signals. We show that agents
(i) choose signal structures that are more likely to reinforce their prior beliefs and (ii) choose
less informative signals when their prior beliefs are more precise. For sufficiently precise be-
liefs, agents choose completely uninformative signals. We call the former the confirmation
effect and the latter the complacency effect. Taken together, the two effects imply that the
beliefs of ex ante identical agents over time can cluster in two distinct groups at opposite
ends of the belief space. The complacency effect holds uniformly when information cost is
proportional to channel capacity, but not when cost is proportional to reduction in entropy.

1. Introduction

Many countries have experienced increases in political polarization and in disagreement
about objective facts. For example, disagreement in the US about whether climate change
is real and caused by human activities has increased and the views on what is essentially an
empirical scientific question is well predicted by party affiliation.1 Political polarization and
disagreement about facts clearly has many causes and politically motivated disinformation,
is likely to be one of them. Stating a particular belief about a given fact may for many people
also be more an expression of group belonging, rather than an expression of a sincerely held
belief about the true nature of the world. However, what we show in this paper is that even
ex ante identical, rational agents may self-sort into different informational bubbles, where
agents within one group permanently hold beliefs about a fact that are the opposite of the
beliefs of the members of the other group.2
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This result is driven by two effects, both of which are consequences of agents’ endogenous
information choices. The first effect, which we call the confirmation effect, causes agents
to choose to observe signals that are more precise in states they believe to be more likely.
Those signals are therefore more likely to confirm their prior beliefs. If two agents initially
observe different realizations of signals drawn from the same distribution, the confirmation
effect then makes it less likely that agents’ beliefs will converge over time. The second effect,
which we call the complacency effect, causes agents to choose less precise channels as their
uncertainty decreases. For sufficiently precise beliefs, this effect causes agents to choose
completely uninformative signals. Combined, the two effects imply that the beliefs of ex
ante identical agents over time will cluster in two distinct groups on opposite ends of the
belief space.

A basic premise of this paper is that there exists an objective reality. However, agents
cannot observe this reality directly and instead have to choose a noisy information channel.
Less noisy channels are more costly and agents can choose channels that have different
precisions in different states of the world. One way to interpret this setup is that agents
choose the medium through which facts about the world are channeled. For example, we may
all be trying to verify whether global warming exists. Informative sources require a lot of
attention, while uninformative sources require very little: it may be harder to extract a signal
from an article in Nature than from a sound bite on cable television. Some channels may
also be more accurate in one state of the world, while other channels may be more accurate
in other states. If precision is costly, we show that agents allocate more precision to those
states they find a priori more likely. That means that agents endogenously choose channels
that are less likely to prove their priors wrong. The endogenous allocation of precision may
then perpetuate differences in beliefs and lead to permanent disagreement about the true
state of the world.

The early literature on costly information acquisition treated information as a scarce
resource, e.g. Grossman and Stiglitz (1980). The key conceptual shift introduced by Sims
(1998) and Sims (2003) was that information may be plentiful, but people’s attention is a
scarce resource. Beyond this basic change of perspective, the rational inattention literature
inspired by Sims early work makes specific assumptions about how to model the cost of
attention. The most common formulations either put a constraint on the reduction in entropy
that agents experience by observing a signal, or a utility or pecuniary cost that is increasing
in the reduction in entropy, e.g. Sims (1998), Sims (2003), Maćkowiak and Wiederholt
(2009), Woodford (2009), Matějka (2015) and Matejka and McKay (2015).3

In the analysis below, we study the optimal information choices under two different cost
functions for information acquisition. An alternative to the standard approach to model in-
formation cost as proportional to the expected reduction in entropy, is to model information
cost as proportional to channel capacity. Like mutual information, channel capacity is based
on 1948’s entropy concept and it can be interpreted as the maximum possible entropy re-
duction that any agent, could achieve by observing a given signal structure. Woodford (2012)
was the first paper to propose using channel capacity as a measure of information cost and

3It is common in the rational inattention literature to not model the signals explicitly but instead to focus
on the mutual information between actions and latent states. This is without loss of generality and is
inconsequential for the argument here.
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used it to explain several choice anomalies. Here, we show that the modeling information
cost as mutual information or channel capacity lead to substantively different predictions
about how agents choose signal structures as functions of their prior beliefs.

Woodford (2012) argued that specifying information cost as proportional to channel ca-
pacity rather than to entropy reduction allows for better explanations of experimental evi-
dence on visual perception. We interpret the different specifications of information costs
as reflecting differences in terms of how much control an agent has over the information
generating process. If an agent can control the information generating process so that he
only spends resources on acquiring new information, it is reasonable to model the cost of
information as being related to how much he learns, i.e. how large the reduction in entropy
is between his prior beliefs and his posterior. Examples of such behavior are surveys of
market participants, direct measurements of some aspect of reality, or experiments designed
to answer a particular question.

On the other hand, consider an agent who does not have complete control over how the
information he observes is generated, but instead uses secondary sources such as newspapers,
radio broadcasts or TV shows to acquire more information. It is then more natural to think
of the cost of information in terms of time spent reading, listening or watching, and it is
less clear that the cost of information should be measured relative to the prior knowledge of
the agent. For instance, a longer broadcast that contains more information is more costly
to watch, but also potentially more informative. It is possible that some information in a
broadcast is already known to a relatively informed agent, but unless the agent knows exactly
at which points in the broadcast already known information will be revealed, it is as costly
for the well-informed as for the uninformed to watch the broadcast. In such settings it may
be more natural to think of the cost of information as being determined by the maximum
any person could learn from a text or broadcast and being independent of that agent’s prior
knowledge. This latter scenario corresponds to modeling the cost of information in terms of
channel capacity.

Using mutual information as a measure of informativeness may thus be more reasonable
in settings where agents can design their signal structure to completely avoid repetition of
already known information. However, using channel capacity may be more reasonable in
settings where agents can choose the precision of information but cannot avoid repetition
of already known information. Both approaches have appealing features and we will not
argue that one is always a better description of human behavior than the other. Instead, our
focus is on demonstrating the different predictions that the two specifications imply about
how agents form beliefs and how these evolve over time. In particular, we demonstrate that
modeling information cost in terms of channel capacity implies that when agents’ priors are
sufficiently precise, they are more likely to choose completely uninformative signals and thus
stop updating their beliefs.

To understand why the two cost functions imply different behavior, consider the decision
problem of an agent who wants to decide whether a given signal is worth paying attention
to or not. When the precision of the agent’s prior is higher, the marginal value of observing
an additional signal decreases since the agent is already pretty sure about the state of the
world. The expected reduction in uncertainty from observing the signal is then small. But if
the cost of the signal is measured in terms of entropy reduction, a given signal also becomes
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cheaper as the prior precision of an agent’s beliefs increases. In the limit with perfectly
precise priors, any signal, regardless of its precision, can be observed for free. On the other
hand, if the cost of paying attention to a given signal depends only on the precision of the
signal, agents demand less and less precise signals as the precision of their beliefs increase,
since the marginal usefulness of the signal then decreases. This implies that when an agent’s
beliefs are precise enough, he will choose to observe completely uninformative signals and
not update his beliefs further. Importantly, an agent may stop updating his beliefs before
they become degenerate. In fact, even an agent that attaches a higher probability to the
incorrect state than to the correct state of the world may stop updating his beliefs. The
beliefs of different agents may then cluster permanently in two distinct groups, where one
group is almost certain that one state has occurred and the other group is almost certain
that it has not.

Our paper is not the first to propose a theory that can explain persistent disagreement
among agents. The starting point of many studies is a well-known result by Savage (1954).
He argued that repeated observation of signals will lead a Bayesian agent to assign probability
1 to a true event almost surely as his length of experience increases. Even if different agents
start off with different priors, their beliefs should then converge over time. Underlying this
result is an assumption that the true state of nature is assigned a positive probability a
priori. Blackwell and Dubins (1962) built on Savage’s result and showed that as long as the
two agents’ priors are absolutely continuous, then their beliefs will converge over time.

One way to break the result that beliefs converge over time is to assume that agents assign
a zero probability to some states that may in fact occur. For instance, Freedman (1963)
and Miller and Sanchirico (1999) show that relaxing the assumption of absolute continuity
between the subjective and the true distribution weakens the result. In related work, Berk
(1966) shows that if an agent uses an incorrect model, his beliefs may not converge to a
single point. Our setup generates persistent disagreement without such restrictions. Our
agents are rational Bayesians and the support of their prior beliefs contain the true state of
nature, which conforms to the assumptions of Blackwell and Dubins (1962).

The agents in our model solve a dynamic information choice problem in a simple binary
state setting and our paper contributes to a growing literature studying the optimal allocation
of attention in dynamic settings. Examples include Steiner et al. (2017) who propose a
framework to study richer discrete state models of inattention, Maćkowiak et al. (2018) who
propose analytical methods to study dynamic attention problems in linear Gaussian settings
and Afrouzi and Yang (2016) who study how inflation dynamics and forward guidance are
affected by rational inattention. Sundaresan (2017) shows that inattention to ex-ante low-
probability events can generate endogenously persistent increases in uncertainty. Ilut and
Valchev (2017) propose a dynamic framework in which agents can pay attention to learn
about a policy function, rather than about an exogenous random variable.

One way to interpret the choice of channels in our model is to think of it as a choice
about which sources to get information from, or which news papers to read or what TV
channels to watch. Gentzkow and Shapiro (2006) and Besley and Prat (2006) show that
competition among information providers makes it difficult to hide information, and Hong
and Kacperczyk (2010) shows it can decrease reporting bias. Mullainathan and Shleifer
(2005) show that if behavioral agents prefer news that favors their beliefs, media sources
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will tend to be biased. This paper can deliver the same demand story while using rational
agents. Additionally, this paper provides two dimensions over which channels are graded:
overall informativeness and asymmetric precision across states.

Gentzkow and Shapiro (2006) present a model that, like our model, is populated with
agents that are rational Bayesians. They posit that if newspapers are rewarded for the
perceived accuracy of their reporting, they will bias their reporting to conform to agents’
(possibly incorrect) priors. The mechanism behind their result is that the perceived accuracy
of an information source is decreasing in the distance between signals and priors. Rational
agents then perceive information sources that confirm their priors to be more accurate. In
our model, agents know how precise their information is, and yet, they still choose channels
that are more likely to confirm their prior beliefs.

Perego and Yuksel (2017) study ideological slant in news media markets where agents
have heterogenous preferences over both what the political agenda should be and how issues
should be addressed. In their model, increased competition leads to news outlets to provide
more specialized content, making agents disagree more about the desirability of a given
policy. However, the agents that disagree the most about the desirability of a policy, agree
the most about the state, i.e. the consequences of the policy. In contrast, the agents in our
model disagree about objective reality.

The confirmation effect that makes agents choose channels that are more likely to confirm
their priors is related to other forms of confirmation biases that have been studied in the
literature. Nickerson (1998) defines confirmation bias as “the unwitting selectivity in the
acquisition and use of evidence”. Models of confirmation bias include Suen (2004), Cukier-
man and Tommasi (1998), Rabin and Schrag (1999), Koszegi and Rabin (2006). Baliga
et al. (2013) show that divergence cannot occur in a Bayesian updating framework. Fryer
et al. (2013) assume that agents receive ambiguous signals which they interpret as signals
in favor of their prior, and keep only this interpretation in memory. In the present paper,
the selectivity is not unwitting but intentional, and thus provides a theory to explain the
observed behavior without relying on behavioral biases.

Maćkowiak and Wiederholt (2018) studies a model in which agents can choose how much
information to acquire about their optimal actions in different states of the world. They
show that agents will allocate more attention to learn about optimal behavior in states that
are ex ante more likely to occur, and that the expected loss in a given state is inversely
proportional to how likely that state is. As in our model, corner solutions may occur where
agents may choose to not learn anything about the optimal behavior in one state and instead
allocate all their attention to learn about what to do in the other state. However, their model
differs from ours in that agents do not allocate attention to learn about which state they are
in. In Maćkowiak and Wiederholt (2018), agents do not allocate attention to learn about
objective reality, but to prepare for different contingencies that once they occur, are known
with certainty.

Some papers such as Lord et al. (1979), Baumeister and Newman (1994), show that
people pay less attention to information confirming their prior and evaluate “disconfirming
evidence” more thoroughly. This paper’s model finds that if agents receive disconfirming
signals, they update their beliefs more strongly, which is consistent with this result. Benôıt
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and Dubra (2017) propose a model that can explain why rational agents may interpret the
same evidence differently.

Our model, as well as the rational inattention literature more broadly, presumes that
agents’ information gathering behavior responds to incentives. A parallel experimental lite-
rature provides supporting evidence for this assumption, e.g. Ambuehl (2016) and Bartoš
et al. (2016).

The next two sections present the basic set up and describe an agent’s optimal channel
choice. There, we formally derive the confirmation and the complacency effects and show
that for sufficiently precise priors, agents will choose a completely uninformative channel.
We then generalize these results to a dynamic setting where agents choose the precision of
the current channel while taking into account that more precise information today will also
increase future utility. Using the dynamic model, we demonstrate that the combination of
the confirmation and complacency effects endogenously generate permanent disagreement in
a population of ex ante identical agents. We also extend some of the results to allow for
asymmetric preferences across states and irreducible noise.

2. A model of hidden states and costly channels

We start by presenting a simple setup in which a single agent wants to determine the state
of the world. Different states of the world cannot be distinguished by direct observation and
the agent instead needs to rely on noisy channels. The agent can choose how informative
the channel is subject to a cost, and more informative channels are more costly.

Costly information acquisition can be modeled in several ways. We use the set up presented
here to study two cost of information functions that both build on 1948’s entropy concept.
Mutual information is a measure of how much information an agent with a specific prior
learns on average from observing a given signal. Channel capacity is a measure of how much
any agent can learn from a given signal. It is defined as the maximum mutual information
of a given signal over all priors. Stated differently, channel capacity measures how much a
hypothetical minimally informed agent on average learns from a given signal.

To date, most of the literature has followed Sims (2003) and used mutual information to
specify the cost of information, e.g. Mackowiak and Wiederholt (2009), Woodford (2009),
Matějka (2015, 2016) and Matějka and McKay (2016). An exception is Woodford (2012) who
uses channel capacity to model consumer choices. In this section, we formally define mutual
information and channel capacity and discuss some of their properties that are important
for understanding the results in the sections that follow.

2.1. States and agent utility. Nature determines the state of the world ω ∈ {0, 1} ≡ Ω.
An agent cannot observe the state of nature directly and we denote an agent’s prior as
π ≡ p(ω = 1).

An agent can pay a cost to observe a binary signal s ∈ {0, 1} about the state of the world.
We will refer to the information structure defined by the error probabilities ε0 and ε1 that
determine the probability of observing a signal s 6= ω as a channel through which the agent
gets information about the true state of nature.

Definition 1. A channel S ∈ (0, 1) × (0, 1) is defined by the error probabilities ε0 ≡ p(s =
1 | ω = 0) and ε1 ≡ p(s = 0 | ω = 1).
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Conditional on the signal s, agents use Bayes rule to update their beliefs and we denote the
posterior belief conditional on the signal s as p (ω | s) . We assume, without loss of generality,
that ε0 + ε1 ≤ 1 so that p(ω = 1 | s = 1) ≥ p(ω = 1).

The agents make their decisions in two stages. In the first, agents choose the optimal
precision of the channel. That is, they choose error probabilities ε0 and ε1 in order to
maximize the objective function Φ

max
S

Φ (S, π) = E [U (a∗, ω) | S, π]− θΓ(S, π) (2.1)

where Γ is the cost associated with the channel S. The parameter θ scales the cost function
Γ.

In the second stage, after the signal s has been observed, agents choose their optimal
action a∗ ∈ {0, 1} such that

a∗ = arg maxE [U (a, ω) | s, π] (2.2)

where
U (a, ω) ≡ 1− |ω − a| . (2.3)

An agent thus gets one unit of utility for taking the action a = ω and zero otherwise. Below,
we will analyze the implications of two different specifications for the cost function Γ that
both build on 1948’s concept of entropy to quantify information.4

2.2. Information, entropy and channel capacity. 1948 defined the amount of informa-
tion I contained in a message that is observed with probability p as

I ≡ log
1

p
= − log p. (2.4)

This definition is appealing: Being told that something unexpected happened is more infor-
mative than being told about an event occurring that you already assigned a high probability
to. Entropy H(Ω) of a source (or random variable) ω ∈ Ω is defined as the expected amount
of information

H(Ω) =
∑
ω∈Ω

p (ω) log
1

p (ω)
. (2.5)

In a binary state model, entropy is maximized when both states are equally likely, i.e. when
p (ω = 1) = 1

2
. Entropy is minimized when one state is certain, i.e when p (ω = 1) equals 0

or 1.

2.2.1. Two candidate cost functions. Conditional entropy H(Ω | S) quantifies how much
uncertainty remains about Ω after observing S. It is defined as

H(Ω | S) =
∑
s∈S

∑
ω∈Ω

p (ω, s) log
1

p (ω | s)
. (2.6)

Conditional entropy (2.6) can be used to compute the mutual information I(Ω, S)

I(Ω, S) = H(Ω)−H(Ω | S) (2.7)

4Alternatively, we could have let agents take an action in (0, 1) with the aim of minimizing the variance

E (ω − a)
2
. All the qualitative results of this paper would continue to hold, but we would loose tractability.
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which quantifies how much information is revealed on average about Ω by observing S. In a
binary state model, mutual information is maximized when p (ω = 1) = 1

2
and p (ω = 1 | s)

equals 0 or 1.
An information channel p(S | Ω) is defined by a probability distribution of signals con-

ditional on the state. The channel capacity C is the maximum reduction in entropy that
can be achieved by applying the channel to a (source) distribution p(ω). In our binary state
setting, it is thus defined as

C (p(S | Ω)) = max
p(ω=1)∈(0,1)

I(Ω, S) (2.8)

where the maximum is taken over all possible distributions p (ω = 1) ∈ (0, 1).5 Below, we will
study the optimal channel choices when the cost of information function Γ is proportional to
mutual information as well as when it is proportional to channel capacity. To ease notation,
we will denote the cost functions as, respectively ΓI ≡ I(Ω, S) and ΓC ≡ C (p(S | Ω)) .

2.3. Properties of mutual information and channel capacity. Mutual information
and channel capacity share many characteristics that make both of them attractive to use
as information cost functions. However, as cost functions they also differ in ways that affect
agents’ optimal choice of signal structure. The properties of the two functions that are most
important for our purposes are summarized by the following four lemmas.

Lemma 1. Mutual information I(Ω, S) and channel capacity C(Ω, S) are both convex in the
precision of signals (1− ε0) and (1− ε1).

Proof. That mutual information is convex in the precision of signals is a standard result, e.g.
Theorem 2.7.4 in Cover and Thomas (2006). That channel capacity is convex follows from
that the (point-wise) maximum of convex functions is a convex function. �

Lemma 1 follows directly from the definitions of mutual information and channel capa-
city. It implies that regardless of whether we model the cost of information using mutual
information or channel capacity, the marginal cost of information is increasing in the signal
precisions (1− ε0) and (1− ε1). The lemma also implies that the marginal cost of precision
in one state is increasing in the precision of the channel in the other state.

Mutual information I(Ω, S) and channel capacity C(Ω, S) thus share some properties,
but they differ in at least one aspect that is important for agents’ decisions in our setting.
Mutual information depends directly on an agent’s prior beliefs while channel capacity does
not. The choice of cost function will thus affect how the optimal information channel depends
on an agent’s prior beliefs. The following lemma states a general property of the relationship
between mutual information and the prior distribution that is useful for understanding an
agent’s choice of channel precision.

5The closed form expression for the channel capacity of a binary asymmetric channel is given by

ΓC =
ε0

1− ε0 − ε1
H (ε1)− 1− ε1

1− ε0 − ε1
H (ε0) + log2

(
1 + 2

H(ε0)−H(ε1)
1−ε0−ε1

)
where H (ε) is the entropy of a binary random variable with probabilities given by ε and 1 − ε. See Moser
et al. (2009).



INATTENTION AND BELIEF POLARIZATION 9

Lemma 2. The mutual information of the channel S is concave in the prior π everywhere
on (ε0, ε1) ∈ (0, 1)× (0, 1)

Proof. See Theorem 2.7.4 in Cover and Thomas (2006). �

Again, Lemma 2 is a standard result and follows directly from manipulation of the defini-
tion (2.7). Importantly, the lemma implies that the marginal cost of information is decreasing
as an agent’s prior π tends to either 0 or 1. As mentioned above, the same is not true for
channel capacity. Since channel capacity is defined as the maximum mutual information
that can be achieved between a given channel S for any prior π, channel capacity cost is by
construction independent of the precision of an agent’s prior.

Lemma 3. The channel capacity of a given channel S is independent of an agent’s prior.

Proof. The lemma follows immediately from the definition (2.8) of channel capacity. �

It is perhaps useful to point out here that, while channel capacity is defined as the max-
imum entropy reduction that can be achieved for any prior distribution, below agents con-
dition only on their specific (and unique) prior π when choosing ε0 and ε1 in the signal
structure. For our purposes, the relevance of the max operator in the definition of channel
capacity is simply to make information cost a function only of channel precision and not
depend on an agent’s prior beliefs.

The last properties of mutual information and channel capacity that we discuss here relates
to how these functions behave at the boundaries of the precision of the channel S and prior
beliefs π.

Lemma 4. Mutual information I(Ω, S) tends to zero when π tends to either 0 or 1 or when
the channel S tends towards being completely uninformative. Channel capacity C(Ω, S) tend
to zero only when the channel tend towards being completely uninformative.

Proof. The mutual information between the signal S and the state Ω can be expressed as

I(Ω, S) =
∑

s∈{0,1}

p(s)
∑

ω∈{0,1}

p(ω | s) log
p(ω | s)
p(ω)

. (2.9)

Clearly, (2.9) is only zero if and only if p(ω | s) = p(ω) for every ω and s. Mutual information
is therefore zero either when the prior p(ω) is dogmatic, i.e. when p(ω = 1) equals either
0 or 1, or when the signal s is independent of ω. Since channel capacity is defined as the
maximum of I(Ω, S) over all priors p(ω), channel capacity is zero only when the signal s is
independent of ω. �

Lemma 1 ensures that a solution to the agent’s optimization problem exists, is unique
and that an interior solution can be characterized by standard first order conditions. The
properties described by Lemma 2, 3 and 4 are important for understanding why the two cost
functions have different predictions about an agent’s channel choice, and in extension, his
beliefs. In particular, the fact that channel capacity is independent of an agent’s prior while
mutual information is not, is important for the results that follow.
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3. Optimal channels and beliefs

In this section we study the optimal choice of information channels while taking an agent’s
prior belief π as given. We show that an agent chooses a channel that (i) is more accurate
in the state that is a priori more likely, (ii) is less informative the more precise his prior is,
and (iii) at some sufficiently precise prior, the chosen channel is completely uninformative.
In the next section we generalize these results to a dynamic setting where an agent’s prior
in period t + 1 is the posterior beliefs inherited from period t. In what follows, we denote
the parameters of an optimally chosen channel S∗ as ε∗0 and ε∗1.

3.1. Priors and optimal channels. Agents maximize the objective function (2.1) by choo-
sing ε0 and ε1 while taking their prior belief π as given. Optimally chosen informative signals
imply that it is always optimal for an agent to take the action a = s. This is a general pro-
perty of choices subject to a binding entropy constraint: If an agent takes the same action
in response to both signals, he can achieve the same utility at lower information cost by
always observing the same signal. The expected utility of a channel is therefore equal to the
expected probability of observing a correct signal

E (U | ε0, ε1, π) = (1− π) (1− ε0) + π (1− ε1) . (3.1)

An optimally chosen channel equates the expected marginal benefit of increasing the precision
in a given state with the marginal cost of doing so. At the optimum, agents trade off a lower
error probability in one state against a lower error probability in the other state. The first
order conditions that describe the optimal choice of error probabilities at an interior solution
are given by

(1− π) = −θ ∂Γ

∂ε0
, π = −θ ∂Γ

∂ε1
. (3.2)

The relative expected marginal benefit of a more precise signal is higher in the state that
the agent believes is more likely to occur. Because of this, agents display what we call the
confirmation effect.

Proposition 1. (Confirmation effect) The optimal channel is more precise in the state that
is a priori more likely, i.e. ε∗0 > ε∗1 if π > 1

2
and ε∗0 < ε∗1 if π < 1

2
.

Proof. In the Appendix. �

Because the confirmation effect makes agents choose a signal that is more accurate in the
a priori more likely state, the agent is also more likely to observe a signal that reinforces
his prior beliefs about which state is more likely. That is, ε0 > ε1 implies that p (s = 1) >
p (s = 0) and vice versa. The confirmation effect holds regardless of whether information
cost is proportional to mutual information or channel capacity.

A corollary of the confirmation effect is that when agents receive a disconfirming signal,
i.e. the signal realization that is less likely given their prior beliefs, they will update their
beliefs further. To see this, note that for a Bayesian agent the expected posterior must equal
the prior. The expected posterior is equal to the sum of the probability of observing each
signal times the posterior conditional on the signal in question. We thus have that

π = p (ω = 1 | s = 1) p (s = 1) + p (ω = 1 | s = 0) p (s = 0) . (3.3)
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Rearranging this expression gives

p (s = 1)

p (s = 0)
=
π − p (ω = 1 | s = 0)

p (ω = 1 | s = 1)− π
(3.4)

so that p (s = 1) > p (s = 0) implies that the belief revision π − p (ω = 1 | s = 0) is larger
than p (ω = 1 | s = 1)− π.

In the dynamic model studied in the next section, the confirmation effect reinforces diffe-
rences in beliefs that may arise from different agents observing different signal realizations.
Therefore, the confirmation effect makes it more likely that ex ante identical agents will
disagree permanently. To see why, consider two agents that both assign probability 1/2 to
each state. Because the agents’ priors are the same, they will therefore also choose the same
signal structures. However, even with the same signal structures, the two agents may by
chance observe different signal realizations and their posterior beliefs will then be different.
Because of the confirmation effect, each agent then chooses a signal structure in the next
period that makes it relatively more likely that their beliefs will continue to diverge.

The confirmation effect relates how the relative precision of signals in different states
depends on the prior beliefs π. The optimal channel capacity also depends on the prior, but
the two cost functions ΓC and ΓI imply qualitatively different relationships.

Proposition 2. (Complacency effect) Under the cost function ΓC, but not under ΓI , an
agent always chooses a less informative channel with lower capacity as the precision of his
prior is increased.

Proof. In the Appendix. �

To understand the intuition behind the proof of Proposition 2, note that by (3.1), the
expected utility of a channel’s precision in a given state is increasing linearly in the prior
probability of the state in question. Under ΓC , the cost of a channel is independent of
the prior π and convex in the precision of the signals. The optimal channel then has lower
capacity the more precise the prior is. We call the fact that agents choose less informative
channels the more precise their prior is the complacency effect and it holds monotonically
when cost is proportional to channel capacity.

Under ΓI , the relationship between precision of the prior and the capacity of the optimal
channel is not monotonic. Mutual information is bounded above by prior entropy, so the cost
of any signal tends to zero as the prior become more precise. With a perfectly precise prior,
any signal structure, including a perfectly revealing one, is thus consistent with optimizing
behavior.

The next result shows that under ΓC , the complacency effect is powerful enough so that
for sufficiently precise priors, an agent will choose a completely uninformative channel.

Proposition 3. (Information shutdown) When information cost is proportional to ΓC, there
exist sufficiently precise priors π ∈ [1

2
, 1) and π ∈ (0, 1

2
] so that an agent will choose a

completely uninformative channel for any θ > 0.

Proof. By symmetry, we only need to prove the statement for π ∈ [1
2
, 1). The marginal utility

of more precise signals in state ω = 0 is equal to (1− π) . As π → 1 the marginal utility thus
tends to zero. However, because ΓC is non-negative and convex in the precision of signals,
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the first order condition is slack at the limit. For some π < π it is thus optimal to choose
ε0 = 1 and ε1 = 0. Since an agent then observes s = 1 with probability 1 in both states, the
channel is uninformative (and has zero cost). �
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Figure 1. Optimal channel precision as a function of prior beliefs π for different values of
the cost parameter θ. Solid lines indicate optimal error probabilities under the cost function
ΓC and dashed lines indicate optimal error probabilities under the cost function ΓI .

The optimal channel choices are illustrated in Figure 1 where we have plotted the optimal
error probabilities ε∗0 and ε∗1 under both ΓC and ΓI as functions of the prior π and for different
values of θ. The confirmation effect states that as an agent becomes more certain about the
state, he will increase the precision of his channel in the state that he thinks is more likely
and decrease the precision in the other. In the figure, this is manifested by that ε∗0 (blue
lines) is increasing in π and that ε∗1 (red lines) is decreasing in π. We can see that this effect

is stronger under ΓC (solid lines) than under ΓI (dashed lines) by the fact that the ratio
ε∗0
ε∗1

is lower under ΓC than under ΓI for all π < 1
2
, and symmetrically, that

ε∗1
ε∗0

is lower under ΓC

than under ΓI for all π > 1
2
.

Figure 1 also shows that under ΓC , for sufficiently precise priors agents choose a channel
that always report the signal that indicates that the more likely state is true. This holds for
all values of θ and the channel is then completely uninformative. For large values of θ the
optimal signal choices under ΓI coincide with the optimal choices under ΓC for all beliefs
away from the boundaries. However, for lower values of θ, there are no prior beliefs for which
agents choose uninformative signals under ΓI . At the boundary, i.e. for π equal to 0 or 1,
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the optimal signal structure is indeterminate under ΓI since all signal structures are then
costless.
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Figure 2. Channel capacity ΓC as a function of prior beliefs π for different values of the
cost parameter θ. Solid lines indicate the optimal channel capacity under the cost function
ΓC and dashed lines indicate optimal channel capacity under the cost function ΓI .

In Figure 1 we could see that agents generally choose lower error probabilities under ΓI
than under ΓC . This is so because the complacency effect is weaker (and not-necessarily
monotonic in the precision of the prior) under ΓI . Figure 2 illustrates the complacency
effect more directly. There, we have plotted the optimal channel capacity under both ΓC
and ΓI as functions of the prior π and for different values of θ. Regardless of cost function
and the value of θ, an agent chooses the most informative channel when his prior is most
uncertain, i.e. when π = 1/2. When an agent becomes more certain about the state, he will
decrease the informativeness (and the cost) of the channel. Under ΓC , there always exists
sufficiently precise priors so that an agent chooses a completely uninformative channel with
zero capacity for any θ > 0. However, under ΓI , this is only true for higher values of θ.
For lower values of θ, there are no intervals of beliefs for which agents choose uninformative
channels.

In this section we have shown that regardless of which cost function we use, an agent will
choose a channel that is more precise in the state of the world that is a priori more likely.
As the precision of the prior is increased, an agent whose information cost is proportional
to channel capacity always chooses a less informative channel. We call this the complacency
effect, and we showed that under ΓC , it leads an agent to choose a completely uninformative
channel when his prior becomes sufficiently precise. In the next section, where we study
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a dynamic setting, we show that the confirmation and complacency effects make ex ante
identical agents choose channels that lead to permanent disagreement about he state ω.

4. Optimal channels and divergence of beliefs

The analysis above treated the agent’s prior π as given. Here, we study how an agent’s
beliefs evolve over time as he recursively chooses the precision of his channel. We also study
how the distribution of beliefs across a population changes over time. In particular, we show
that beliefs of different agents will endogenously diverge to a time-invariant distribution in
which some agents permanently attach a higher probability to ω = 1 while other agents
permanently attach a higher probability to ω = 0.

4.1. The dynamic channel choice. Time is discrete and indexed by t = 0, 1, 2, .... The
state ω is determined by nature at time zero. Agents are indexed by i ∈ N and agent i
enters period t with prior beliefs p

(
ω = 1 | st−1

i

)
≡ πi,t−1, where st−1

i is the history of signals
observed by agent i. In each period, agent i chooses the precision of the channel Si,t, defined
by the error probabilities ε0i,t ≡ p(si,t = 1 | ω = 0) and ε1i,t ≡ p(si,t = 0 | ω = 1). Agent
i chooses his channel to maximize the sum of the within-period objective function Φ and
the discounted expected continuation value. The optimization problem can be expressed
recursively as a Bellman equation with the prior πi,t as the state variable

V (πi,t−1) = max
ε0i,t,ε1i,t

{U (ε0i,t, ε1i,t, πi,t−1)− θΓ(ε0i,t, ε1i,t, πi,t−1)

+ δE [V (πi,t) | πi,t−1, ε0i,t, ε1i,t]} . (4.1)

The parameter δ ∈ (0, 1) is the rate at which an agent discounts the future. U (ε0i,t, ε1i,t, πi,t−1)
denotes the period t expected utility of the channel Si,t(ε0i,t, ε1i,t) conditional on the prior
πi,t−1. The function θΓ(ε0i,t, ε1i,t, πi,t−1) denotes the associated period t cost.

Proposition 4. (Contraction mapping) The Bellman equation (4.1) is a contraction map-
ping.

Proof. In the Appendix. �

Proposition 4 is proven using standard methods, e.g. Theorem 3.3 in Stokey and Lucas
(1989). That the Bellman equation is a contraction mapping implies that there exists a
unique solution to the optimal channel choice that can be found by function iteration.

4.2. Optimal dynamic channel precision. To understand how the dynamic channel
choice differs from the static case, consider an agent who is about to choose the period
t precision of his channel. The intra-period trade-offs are the same as in the static model,
but the agent now also needs to consider the impact of his choices on future utility. The
continuation value V (πi,t) depends on his beliefs in the next period and the agent thus needs
to take into account how his choices today affect the distribution of his next period beliefs.

A rational Bayesian agent’s expected posterior must coincide his prior. That is, because
of the law of iterated expectations, the expected posterior must be the same as his prior.
The choice of precisions thus cannot affect the conditional mean of πi,t. However, the choice
of precision does affect the conditional variance of the posterior. As shown in Figure 3, the
value function V is convex in π and thus increasing in the conditional variance of beliefs
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Figure 3. The value function V (πi,t)

πi,t. The conditional variance is in turn increasing in the precision of signals. To see why,
note that with a perfectly uninformative channel, the prior will be unchanged, but with
perfectly precise signals, the posterior will be at either boundary in {0, 1} . Choosing more
precise signals today, thus increases the expected continuation value. Since the intra-period
trade-offs are unchanged from the static model, the convexity of V implies that for a given
prior, agents always choose a channel that is at least as informative period-by-period as the
channel in a static model with the same cost parameter θ.6 This is illustrated in Figure 4
and 5, where we have plotted, respectively, the optimal signal precisions and the optimal
channel capacity for the model with parameters θ = 2 and δ = 0.5.

We can see from Figures 4 and 5 that when beliefs are sufficiently precise, with πt either
below 0.3 or above 0.7, agents choose completely uninformative signals also in the dynamic
model. The intuition for the information shutdown in the dynamic model is the same as
in the static set up. When the agent has a sufficiently precise prior entering a period, the
marginal benefit of any informative channel is smaller than its marginal cost. For future
reference, we will denote the information shut down points in the dynamic model as πd and
πd.

4.3. Population dynamics of beliefs. The dynamic model can be used to study how
beliefs evolve over time. In particular, we will use it to show that agents endogenously sort
into two distinct groups who permanently disagrees about which state is more likely. Figure
6 illustrates the implied belief dynamics for a population of agents under the assumption that
the true state ω = 0. The discounting and information cost parameters are set to δ = 0.5 and
θ = 2 respectively. The dotted lines are the initial distribution of prior beliefs, the dashed
lines are the distribution of priors in period 1 and the solid lines are the limiting distribution

6The distinction between a static and dynamic model is only relevant if δ 6= 0.
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Figure 4. The optimal static (dashed lines) and dynamic (solid lines) signal precisions
with θ = 2 and δ = 0.5 (for the dynamic model).
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Figure 5. The optimal channel capacity in the static (dashed line) and dynamic (solid
line) model with θ = 2 and δ = 0.5 (for the dynamic model).

of beliefs as t → ∞. The top panel is initialized from a degenerate distribution where all
agents starts from the same prior π0,i = 1

2
for all i. The bottom panel is initialized from a

uniform distribution π0,i ∼ U(0, 1).
In the top panel, where the initial distribution put equal weight on both states, all agents

choose the same error probabilities. A fraction
(
1− ε∗0i,t

)
then observes the signal s = 0 and

the fraction ε∗0i,t observes the signal s = 1, generating the two distinct groups of beliefs in
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Figure 6. Belief dynamics with ω = 0. The dotted lines are the initial distribution of
beliefs, the dashed lines are the distribution of priors in period 1 and the solid lines are
the limiting distribution as t → ∞. In the top panel, the simulation is initialized from
degenerate distribution of priors, i.e. πi,0(ω) = 1/2∀i. Bottom panel is initialized from a
uniform distribution of priors, i.e. πi,0(ω) ∼ U(0, 1).

period 1. Because signals are weakly accurate (that is, ε0 + ε1 6= 1), a majority of agents
update towards the correct belief that ω = 0.

In the next period, agents re-optimize their channels, and choose more precise signals in
the state that they believe is more likely. Once beliefs are precise enough, agents will choose
completely uninformative channels and stop updating their beliefs. By chance, some agents
will then have observed a sequence of incorrect signals and end up with beliefs πi,t > πd > 1

2
even though the true state is ω = 0. These agents will choose a completely uninforma-
tive channel in the next period, and thus permanently believe that the incorrect state is
more likely than the correct state. However, since agents are more likely to update their
beliefs towards the correct state, this group is smaller than the group of agents with beliefs
πt,i < πd < 1

2
. Importantly, the limiting distribution is not degenerate and puts positive

weight on both the intervals
(
0, πd

)
and

(
πd, 1

)
. Ex ante identical agents may thus disagree

permanently which state is more likely.
The bottom panel of Figure 6 illustrates the population belief dynamics starting from a

uniform distribution on the interval (0, 1). After one period, we can see that the mass of
beliefs have moved away from the midpoint toward more certain (but not necessarily more
correct) beliefs. In the long run, the middle region of beliefs where agents choose informative
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channels contains no mass at all. This is so because as long as an agent’s beliefs are in the
interval

(
πd, πd

)
, they will choose a weakly informative channel and therefore with positive

probability move away from this region of beliefs and into the regions where they will choose
uninformative signals. Once an agent holds beliefs that imply that it is optimal to choose
uninformative signals, the agent never moves out of this region.

Again, the mass of beliefs in the region below the cut-off is larger, reflecting that any agent
that choose a informative signal is more likely to have beliefs closer to the true state ω = 0.
However, the mass of agents with “wrong” beliefs above the cut-off πd is sizeable. This group
consists of agents with two different types of histories. Some agents’ initial period zero priors
were above πd and these agents therefore never chose an informative channel and their beliefs
therefore never changed. The second type had initial priors in the interval

(
πd, πd

)
, but by

chance observed a sequence of incorrect signals and therefore ended up with beliefs above πd.
Given the initial uniform distribution, the mass of agents that permanently assign a higher
probability to the incorrect state is bounded from below by 1− πd. The net addition to this
group of agents that are there because they observed incorrect signals is represented in the
figure by the mass to the right of the cut-off πd and between the dotted and solid lines.

The limiting distribution of the population beliefs have positive mass in the two discrete
intervals near the boundaries of the belief space where agents choose to no longer acquire
informative signals. Both the absolute and the relative size of these intervals depend on the
cost parameter θ. For a lower value of θ, i.e. for lower cost of channel precision, the width
of both intervals shrink as there is then a wider set of beliefs for which agents choose an
informative channel. On the intensive margin, disagreement thus increases when information
is cheaper, since the average distance between agents in the two intervals then increases.
However, for a given belief, an agent also chooses a more precise channel when θ is lower.
This means that fewer agents end up with incorrect beliefs when information is cheaper.
Cheaper information thus decreases permanent disagreement on the extensive margin.

5. Extensions

In this section we briefly discuss two extensions of the set up described above where we
allow for (i) asymmetric preferences and (ii) irreducible noise in the channels.

5.1. Asymmetric preferences across states. In the benchmark model, we assumed that
agents care equally about taking the right action in both states of the world. In some
situations it may be more costly to be wrong in one state than in the other. To take such
asymmetries into account, we can modify the utility function as follows

U (a, ω) ≡ 1− (1− ω) |ω − a| − γω |ω − a| . (5.1)

The expected utility is then given by

E (U | ε0, ε1, π) = (1− π) (1− ε0) + γπ (1− ε1) . (5.2)

For γ > 1, this implies that agents care more about taking the right action when ω = 1 and
that the relative marginal utility of more precision is tilted towards that state. Agents will
then choose channels that are relatively more precise when ω = 1. With γ 6= 1, the regions
of beliefs where agents choose completely uninformative channels become then asymmetric,
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and for γ > 1 we have that 1− π < π. Beliefs thus have to be more certain in the direction
towards the state for which the preferences are tilted for information acquisition to shut
down.
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Figure 7. Optimal channel precision as a function of prior beliefs π and with cost para-
meter θ = 1 when preferences are asymmetric γ = 2.

The consequences of asymmetric preferences for optimal signal precisions are illustrated
in Figure 7. The asymmetry parameter is set to γ = 2 so that agents attach a higher value
to taking the correct action when ω = 1. We can see that the region of priors for which
the agent is certain to observe the signal si,t = 1 then shifts left, relative to Figure 1. This
means that for a larger region of priors, an agent observes a signal that confirms that the
state where it is more costly to make a mistake has occurred. This is intuitive. With γ > 1,
the cost of a observing an incorrect signal and taking the wrong action is higher when ω = 1
than when ω = 0. An agent is then willing to more often incorrectly believe that ω = 1 since
that is less costly than to incorrectly believe that ω = 0.

Figure 8 illustrates the implications of asymmetric preferences for the belief dynamics. As
in the Figure 3, the true state is ω = 0 and the discounting and information cost parameters
are set to δ = 0.5 and θ = 2, respectively. Compared to Figure 6, where agents put equal
weight on taking the correct action in both states, more agents end up with beliefs that are
permanently assigning a higher probability to the incorrect state. When it is more important
for an agent to take the right action in one state, rather than the other, an agent is more
likely to incorrectly attach a higher probability to the state where mistakes are more costly.

The main implication of asymmetric preferences is thus that an agent is more likely to
believe that the state in which he is more concerned about taking the correct action is more
likely than the state he is less concerned about. Asymmetric preferences also affect belief
heterogeneity. If a majority of agents are more concerned about taking the right action in
the state that is objectively not true, the mass of agents who attaches more weight to the ex
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Figure 8. Belief dynamics with ω = 0 and asymmetric preference parameter γ = 2. The
dotted lines are the initial distribution of beliefs, the dashed lines are the distribution of
priors in period 1 and the solid lines are the limiting distribution as t→∞. In the top panel,
the simulation is initialized from degenerate distribution of priors, i.e. πi,0(ω) = 1/2∀i.
Bottom panel is initialized from a uniform distribution of priors, i.e. πi,0(ω) ∼ U(0, 1).

post incorrect state will increase and potentially increase belief heterogeneity. If the majority
attaches more weight to the true state, disagreement decreases.

5.2. Irreducible noise. In some circumstances, it may be reasonable to think that the
channels available to agents contain a noise component that is irreducible. To model such

situations, we use the modified channel S̃ ∈ (0, 1) × (0, 1) defined by the probabilities
(1− ε0) (1− ε̃0) ≡ p(s = 0 | ω = 0) and (1− ε1) × (1− ε̃1) ≡ p(s = 1 | ω = 1) where
ε̃0, ε̃1 ∈ (0, 1) .The parameters ε̃0 and ε̃1 thus determine an exogenous upper bound on the

precision of the channel S̃. Expected utility is now given by

E (U | ε0, ε1, π) = (1− π) (1− ε̃0) (1− ε0) + π (1− ε̃1) (1− ε1) . (5.3)

The marginal utility of precision is thus decreasing in ε̃0 and ε̃1. If the cost of informa-
tion is unchanged relative to ΓC as in Section 2, introducing irreducible noise then makes
agents choose less informative signals. The reason is that the value of noise reduction has
decreased, so for the same cost function agents will choose a less informative channel. The
range of beliefs for which agents choose completely uninformative channels expands and the
complacency effect still holds.
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If ε̃0 6= ε̃1, the complacency effect affects the choice of ε0 and ε1 asymmetrically. If
the irreducible noise when ω = 0 is much higher than when ω = 1, an agent will pay
more attention to state 1 than state 0, as the marginal benefit of doing so will be higher.
Conditional on a given level of irreducible noise, agents allocate more precision to the state
that they believe is more likely. The confirmation effect thus still holds, conditional on fixed
values of ε̃0 and ε̃1.

6. Conclusions

In this paper we have studied optimal information choice in a setting where agents can
choose how precise their signals are in different states of the world. We showed that the
optimal information choice displays what we call the confirmation effect, by which agents
choose channels that are more precise in the state that they believe to be a priori more
likely. When information cost is proportional to channel capacity, agents uniformly choose
channels that are less informative the more precise their priors are. We call this effect
the complacency effect. The complacency effect can be strong enough so that agents stop
updating their beliefs entirely when their priors are sufficiently precise. This is not a limit
result: Information shutdown can occur even when an agent still attaches a substantial
probability to both states and it may also occur for agents that attached a larger probability
to the incorrect state than to the correct state. Ex ante identical agents may then disagree
permanently, and a population of agents may cluster in two distinct groups near the opposite
boundaries of the belief space.

In the model, the true state of the world is not directly revealed to the agents through
the utility they experience from their actions. The proposed model is thus suitable to study
disagreement about facts that agents cannot evaluate the truth of immediately. Consider for
instance the question of whether climate change caused by human activity is real. For most
people, there is nothing in their everyday experience that would directly indicate whether
the scientific consensus or the climate change skeptics are right. However, their optimal
voting and consumption behavior may depend on whether global warming is real and man
made. Individuals who initially attach a higher probability to climate change being real will
seek out information from sources that are likely to be right, if in fact, climate change is real.
However, individuals who initially believe that it is a Chinese hoax perpetrated in conspiracy
with liberal elites and special interests at universities, will seek out information from sources
that are more likely to be accurate if these beliefs are correct. This paper’s mechanism can
thus explain why even a rational population may self-sort into different media bubbles.

In this paper we used two different functions to model the cost of acquiring information.
Both of them build on 1948’s concept of entropy and both imply that attention is a scarce
resource that should be allocated rationally. The main difference between them arises from
the fact that observing a given signal leads to small reduction in entropy for a well-informed
agent while the channel capacity of a given signal structure is independent of an agents prior.
In this paper, we argued that modeling cost as proportional to channel capacity captures
the time cost of reading articles or observing or listening to broadcasts for which the agent
does not have complete control over the content. This may be of independent interest to
some readers.
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Steiner, J., C. Stewart, and F. Matějka (2017). Rational inattention dynamics: Inertia and

delay in decision-making. Econometrica 85 (2), 521–553.
Stokey, N. L. and R. Lucas (1989). Recursive methods in economic dynamics. Harvard

University Press.
Suen, W. (2004). The Self Perpetuation of Biased Beliefs. The Economic Journal 114,

377–396.
Sundaresan, S. (2017). Rare events and the persistence of uncertainty. Technical report,

working paper, Imperial College London.
Woodford, M. (2009). Information-constrained state-dependent pricing. Journal of Monetary

Economics 56, S100–S124.



24 KRISTOFFER P. NIMARK AND SAVITAR SUNDARESAN

Woodford, M. (2012). Inattentive Valuation and Reference-Dependent Choice. Working
Paper .



INATTENTION AND BELIEF POLARIZATION 25

Appendix A. Proof of Proposition 1

We need to prove that π > 1/2 implies that ε1 < ε0 in equilibrium for both ΓI and ΓC .
For both proofs, we will use that an agent always take the action a = s. This is a general
property of choices subject to a binding entropy constraint: If an agent takes the same
action in response to both signals, he can achieve the same utility at lower information cost
by always observing the same signal.

When information cost is given by ΓI the agent’s decision problem is a special case of the
discrete choice framework studied in McKay and Matejka (2015). From Proposition 3 (and
Equation 1) of their paper it follows that the probability of taking the correct action in state
1 can be expressed as

p (a = 1 | ω = 1)

p (a = 0 | ω = 1)
= e(1+α1) (A.1)

where α1 is a term that is positive if π > 1
2
. Using that p (a = 1 | ω = 1) = 1 − ε1 and the

symmetry of the problem, we get

1− ε1
ε1

ε0
1− ε0

=
e(

1
θ

+α1)

e(
1
θ
−α1)

> 1

implying that ε1 < ε0 which completes the proof for ΓI.
By symmetry and convexity of the problem, it follows that when π = 1

2
we have ε1 = ε0.

It is thus sufficient to show ∂ε1
∂π

< 0 everywhere. For ΓC we can use that the first order
conditions

∂E (U)

∂ε0
− θ ∂Γ

∂ε0
= 0 (A.2)

∂E (U)

∂ε1
− θ ∂Γ

∂ε1
= 0 (A.3)

together with the implicit function theorem implies that

∂εi
∂π

= −
∂2E(U)
∂εi∂π

− θ ∂2Γ
∂εi∂π

∂2E(U)

∂ε2i
− θ ∂2Γ

∂ε2i

.

Since the expected utility is therefore equal to the probability of receiving the correct signal,
i.e.

E (U | ε0, ε1, π) = (1− π) (1− ε0) + π (1− ε1) (A.4)

we then have that
∂ε1
∂π

= − 1

−θ ∂2Γ
∂ε2i

(A.5)

< 0 (A.6)

since ∂2U
∂ε2i

= 0, ∂
2ΓC
∂εi∂π

= 0 and ∂2ΓC
∂ε2i

< 0 which completes the proof. For the final step we used

that expected utility is linear in error probabilities, that channel capacity ΓC is by definition
independent of the prior π and convex in precision.
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Appendix B. Proof of Proposition 2

We need to show that for a more precise prior, i.e. a π closer to 0 or 1, agents will choose
a less informative channel with lower cost ΓC . The first order conditions are

∂Γ(ε0, ε1)

∂ε0
= −π

θ
∂Γ(ε0,ε1)
∂ε1

= −1− π
θ

(B.1)

These expressions are linear in π, and convex in ε0 and ε1, respectively. Consider the solution
when π = 1

2
. By the symmetry of the problem, the optimal solution must entail that

ε0 = ε1 = ε̄. Then consider any other value of π = π′. Without loss of generality, consider
the solution at π′ > 1

2
. The marginal utility of π′

θ
and 1−π′

θ
will differ from the π = 1

2
solution

in equal and opposite measure due to the linearity of the first order conditions. That is:

1− π′

θ
<

1

2θ
<
π′

θ
and

1− π′

θ
− 1

2θ
=

1

2θ
− π′

θ
The marginal costs, however, are convex, and will change convexly in opposite directions.
That is:
∂Γ(ε′0, ε

′
1)

∂ε′0
<
∂Γ(ε̄, ε̄)

∂ε0
<
∂Γ(ε′0, ε

′
1)

∂ε′1
and

∂Γ(ε̄, ε̄)

∂ε0
− ∂Γ(ε′0, ε

′
1)

∂ε′0
<
∂Γ(ε′0, ε

′
1)

∂ε′1
− ∂Γ(ε̄, ε̄)

∂ε0

By Jensen’s inequality the new average marginal cost is higher, but the new average marginal
benefit is the same as before. Therefore, the cost must adjust downward, which implies that
the total amount of information is lower. Because Jensen’s inequality increases in magnitude
the larger the deviation, the lowering is monotonic in |π′ − π|.

Appendix C. Proof of Proposition 4

Here we show that the Bellman equation

V (πi,t−1) = max
ε0i,t,ε1i,t

{U (ε0i,t, ε1i,t, πi,t−1)− θΓ(ε0i,t, ε1i,t, πi,t−1)

+ δE [V (πi,t) | πi,t−1, ε0i,t, ε1i,t]} . (C.1)

satisfies Blackwell’s sufficient conditions and thus describes a contraction mapping, see Sto-
key and Lucas (1989). The value function V is bounded since the period utility cannot
be lower than zero or larger than one. The value function thus describes a mapping from
(0, 1) to the interval

(
0, 1

1−δ

)
, implying that the Bellman equation (C.1) describes a self-

map on the space of bounded functions B(X). Blackwell’s Theorem states that a mapping
T : B(X)→ B(X) is a contraction mapping with contractive constant β if the following two
conditions are met:

(1) Monotonicity: If f, g ∈ B(X) and f(x) ≤ g(x) for all x ∈ X implies that Tf(x) ≤
Tg(x) for all x ∈ X.

(2) Discounting: For a ∈ R+ there exists a β such that for all f ∈ B(X) and all x ∈ X
T (f + a)(x) ≤ Tf(x) + βa. (C.2)

To verify that the Bellman equation satisfies Blackwell’s conditions, we introduce the
following notation. Let Φf (π) denote the period value of the objective function Φ for ε0, ε1 =
arg max f and denote the probability distribution of πt conditional on πt−1 and ε0, ε1 =
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arg max f as p
(
π
′ | π, εf0 , ε

f
1

)
. The set of possible posteriors πt given πt−1, ε

f
0 , ε

f
1 are denoted

Πf . We use analogous notation for the corresponding objects for g.
To show the monotonicity property, use that

Tf (π) = max
ε0,ε1∈(0,1)

Φf (π) + δ
∑
π∈Πf

f (π′) p
(
π
′ | π, εf0 , ε

f
1

) (C.3)

≤ max
ε0,ε1∈(0,1)

Φf (π) + δ
∑
π∈Πf

g (π′) p
(
π
′ | π, εf0 , ε

f
1

) (C.4)

≤ max
ε0,ε1∈(0,1)

Φg (π) + δ
∑
π∈Πg

g (π′) p
(
π
′ | π, εg0, ε

g
1

) (C.5)

= Tg (π) (C.6)

where the first equality follows from the definition of the Bellman equation, the second line
follows from the condition that f(x) ≤ g(x) for all x ∈ X, the third line follows from that
if agents maximize the value function taking g (π′) as given, they cannot do worse than
the choice implied by Φf (π) . The last equality follows from the definition of the Bellman
equation and thus verifies the monotonicity conditions.

To show the discounting property, use

T (f + a)(x) = max
ε0,ε1∈(0,1)

Φf (π) + δ

∑
π∈Πf

f (π′) p
(
π
′ | π, εf0 , ε

f
1

)
+ a

 (C.7)

= Tf(x) + δa (C.8)

The Bellman equation (C.1) is thus a contraction mapping, implying that there exists a
unique fixed point that can be found by function iteration.

Appendix D. Deriving capacity of binary asymmetric channel

Mutual information between the state Ω and the signal S is defined as

I(Ω;S) = H(Ω)−H(Ω | S). (D.1)

Substituting in the expression for H(Ω) and H(Ω | S) then gives

I(Ω, S) =
∑
ω∈Ω

p (ω) log
1

p (ω)
−
∑
s∈S

∑
ω∈Ω

p (ω, s) log
1

p (ω | s)
. (D.2)

To compute the channel capacity of our binary asymmetric channel we need to find the
probability q ≡ p(ω = 1) that maximizes this expression. Use that

I(Ω, S) = H(S)−H(S | Ω) (D.3)

so that
I(Ω, S) = h (q (1− ε0) + (1− q) ε1)− qh (ε0)− (1− q)h (ε1) . (D.4)
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where h(x) is the entropy of a binary variable with probability x. Rearrange to get

I(Ω, S) = h (q (1− ε0 − ε1) + ε1)− q (h (ε0)− h (ε1))− h (ε1) (D.5)

and take the derivative with respect to q to get

I ′d(Ω, S) = (1− ε0 − ε1) log2

(
1

q (1− ε0 − ε1) + ε1

− 1

)
− (h (ε0)− h (ε1)) (D.6)

Set I ′d(Ω, S) = 0 and rearrange

1

q (1− ε0 − ε1) + ε1

− 1 = 2
(h(ε0)−h(ε1))
(1−ε0−ε1) (D.7)

solve for q

q =
1

(1− ε0 − ε1)

(
1

2
(h(ε0)−h(ε1))
(1−ε0−ε1) + 1

− ε1

)
. (D.8)

Define

z ≡ 2
(h(ε0)−h(ε1))
(1−ε0−ε1) (D.9)

so that we can simplify the expression for q to

q =
1− ε1 (1 + z)

(1− ε0 − ε1) (1 + z)
. (D.10)

Substituting the expression for q into the expression for mutual information (D.5) then gives
the capacity ΓC of the channel as

ΓC = h

(
1− ε1 (1 + z)

1 + z
+ ε1

)
− 1− ε1 (1 + z)

(1− ε0 − ε1) (1 + z)
(h (ε0)− h (ε1))− h (ε1) . (D.11)

We can use the definition of z ≡ 2
(h(ε0)−h(ε1))
(1−ε0−ε1) , rewriting as log2(z) = (h(ε0)−h(ε1))

(1−ε0−ε1)
to write this

as

ΓC = h

(
1

1 + z
− ε1 + ε1

)
− 1− ε1 (1 + z)

(1 + z)
log2(z)− h (ε1) (D.12)

ΓC = h

(
1

1 + z

)
− log2 (z)

1 + z
+ ε1 log2 (z)− h (ε1) (D.13)

Now, use that

h

(
1

1 + z

)
= − 1

1 + z
log2

(
1

1 + z

)
− z

1 + z
log2

(
z

1 + z

)
(D.14)

=
1

1 + z
log2(1 + z)− z

1 + z
log2(z) +

z

1 + z
log(1 + z) (D.15)

= log2 (1 + z)− z log2 (z)

z + 1
(D.16)

so that
ΓC = log2 (1 + z)− log2 (z) + ε1 log2 (z)− h(ε1) (D.17)
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which by again using the definition of z we can write as

ΓC = log2 (1 + z)− 1− ε1

(1− ε0 − ε1)
(h(ε0)− h(ε1))− h(ε1) (D.18)

which can then be simplified to give the desired expression

ΓC = log2

(
1 + 2

(h(ε0)−h(ε1))
(1−ε0−ε1)

)
− 1− ε1

(1− ε0 − ε1)
h(ε0) +

ε0

(1− ε0 − ε1)
h(ε1). (D.19)


